Undecidable theories in stationary logic

Authors:
Detlef Seese, Peter Tuschik and Martin Weese

Journal:
Proc. Amer. Math. Soc. **84** (1982), 563-567

MSC:
Primary 03C80; Secondary 03D35

DOI:
https://doi.org/10.1090/S0002-9939-1982-0643750-3

MathSciNet review:
643750

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that the theories of the following classes become undecidable in stationary logic: Well orderings with one unary predicate, linear orderings, and Boolean algebras. This is done by interpreting the theory of symmetric reflexive graphs.

**[1]**J. Barwise, M. Kaufmann and M. Makkai,*Stationary logic*, Ann. Math. Logic**13**(1978), 171-224. MR**486629 (82f:03031a)****[2]**A. Baudisch, D. Seese, H.-P. Tuschik and M. Weese,*Decidability and generalized quantifiers*, Akademie-Verlag, Berlin, 1980. MR**588326 (82i:03048)****[3]**J. R. Büchi,*The monadic second order theory of*, Lecture Notes in Math., vol. 328, Springer, Berlin and New York, 1973, pp. 1-127. MR**0476471 (57:16033)****[4]**P. Eklof and A. Mekler,*Stationary logic of finitely determined structures*, Ann. Math. Logic**17**(1980), 227-269. MR**556893 (82f:03033)****[5]**J. Hutchinson,*Order types of ordinals in models of set theory*, J. Symbolic Logic**41**(1976), 489-502. MR**0403958 (53:7767)****[6]**K. Kunen,*Combinatorics*, in Handbook of Mathematical Logic (J. Barwise, editor), North-Holland, Amsterdam, 1977. MR**0457132 (56:15351)****[7]**D. Seese,*Stationary logic and ordinals*. Trans. Amer. Math. Soc.**263**(1981), 111-124. MR**590414 (82f:03034)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
03C80,
03D35

Retrieve articles in all journals with MSC: 03C80, 03D35

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1982-0643750-3

Keywords:
Stationary logic,
undecidability,
linear ordering,
Boolean algebra

Article copyright:
© Copyright 1982
American Mathematical Society