THE NONHOMOGENEITY OF THE \(E \)-TREE—ANSWER TO A PROBLEM RAISED BY D. JENSEN AND A. EHRENFEUCHT

DIDIER MISERCQUE

Abstract. We prove that the ordered system of all \(C^1EP \)'s, under the order “admits embedding in” is not homogeneous. This answers a problem raised in [2].

1. Introduction. We assume familiarity with [2]. \(L \) denotes the lattice of all \(\forall_1 \)-sentences of Peano Arithmetic (PA) modulo PA. \(\alpha, \beta, \gamma \ldots \) denote elements of \(L \) (we often identify \(\forall_1 \)-sentences with their equivalence classes). 0 and 1 denote respectively the minimum element and the maximum element of \(L \).

By the \(E \)-tree we mean, the class of all prime filters of \(L \) under the partial ordering of reverse inclusion \(\supset \). By a \(C^1EP \) is meant the set of all existential sentences (without parameters) satisfied in some model of PA. The following results are well known (see [2] and [4]).

Lemma 1. F is a prime filter of \(L \) iff
\[\neg (L \setminus F) \text{ is a } C^1EP. \]
This gives an isomorphism between the \(E \)-tree and the ordered system of all \(C^1EP \)'s.

Lemma 1.2. (i) The set of the predecessors of an element of the \(E \)-tree is totally ordered.
(ii) The \(E \)-tree has a minimum element (i.e. \(L \setminus \{0\} \)) and each of its branches has a maximal element.

Jensen and Ehrenfeucht ask [2, p. 243] whether the \(E \)-tree is homogeneous in the sense that any pair of nonminimal, nonmaximal elements can be exchanged by an automorphism.

2. Preliminary results.

Lemma 2.1. The \(E \)-tree has an element \(F \) such that
(i) \(F \) is not maximal,
(ii) \(F \) is not minimal,
(iii) \(F \) has no immediate predecessor,
(iv) if \(B \) is any branch of the \(E \)-tree containing \(F \), then \(F \) has an immediate successor in \(B \).

Received by the editors January 21, 1981.

1Supported in part by an IRSIA grant. I am grateful to the referee for helpful suggestions.

© 1982 American Mathematical Society

0002-9939/81/0000-1091/$01.75

573
Proof. Let θ be a \forall_1-sentence independent of PA such that $\text{PA} + \neg \theta$ and PA have the same \forall_1-theorems; (such a formula exists by a result of Kreisel, cf. §1 of [1]). We denote by E_θ the class of all prime filters of L containing θ and ordered by \supseteq. It is easily shown that each branch of E_θ has a maximum element. Therefore E_θ has (at least) one maximal element F_θ. We will show that F_θ has the required properties.

(i) Let $I = L \setminus F_\theta$, we have $\theta \notin I$. Denote by T the theory $\text{PA} + \neg I + \neg \theta$. T is consistent because if $\text{PA} + \neg I \vdash \theta$, then

$$\exists \varphi \in I \quad \text{PA} + \neg \varphi \vdash \theta,$$

and thus

$$\text{PA} \vdash \varphi.$$}

This is impossible because $\text{PA} + \neg \varphi$ is consistent. Obviously, the prime filter of all \forall_1-sentences true in any model of T is properly contained in F_θ. So F_θ is not maximal.

(ii) If $F_\theta = L \setminus \{0\}$, then $E_\theta = \{L \setminus \{0\}\}$ and the only prime filter of L containing θ is $\forall_1(N)$. We infer that $\text{PA} + \theta \equiv \text{PA} + (L \setminus \{0\})$. This is impossible because $\text{PA} + \theta$ is an R.E. theory and $\text{PA} + (L \setminus \{0\})$ is a \forall_1^0-non-R.E. theory.

(iii) Suppose that F_θ has an immediate predecessor F'. Then

$$\forall \beta \in L \setminus F_\theta \quad \text{PA} + F_\theta + \beta \vdash F'$$

(because, if this theory is consistent, the class of all \forall_1-sentences true in any model of T is a prime filter of L containing properly F_θ and therefore F'; if $\text{PA} + F_\theta + \beta$ is not consistent, the result is obvious). Therefore

$$\forall \alpha \in F' \setminus F_\theta \quad \forall \beta \in L \setminus F_\theta \quad \exists \gamma \in F_\theta \quad \text{PA} + \gamma + \beta \vdash \alpha,$$

or

$$(*) \quad \text{PA} + \neg \alpha + \beta \vdash \neg \gamma.$$}

We also have that F_θ is a maximal element of $E_\theta n$ and therefore $\forall \xi \in F_\theta \quad \text{PA} + \neg (L \setminus F_\theta) + \theta + \neg \xi$ is an inconsistent theory (because, if this theory is consistent, the prime filter of all \forall_1-sentences true in any model of this theory is an element of E_θ properly contained in F_θ). Therefore,

$$(**) \quad \forall \xi \in F_\theta \quad \exists \rho \in L \setminus F_\theta \quad \text{PA} + \theta \vdash \xi \lor \rho.$$}

Let $\alpha \in F' \setminus F_\theta$. By a result of Solovary (cf. [1, Theorem 2.7]), we know that there is a \forall_1-sentence φ, independent of $\text{PA} + \theta + \neg \alpha$, such that

(I) $\text{PA} + \theta + \neg \alpha + \varphi$ and $\text{PA} + \theta + \neg \alpha$ have the same \exists_1-theorems,

(II) $\text{PA} + \theta + \neg \alpha + \neg \varphi$ and $\text{PA} + \theta + \neg \alpha$ have the same \forall_1-theorems. $\varphi \notin F_\theta$; because, if $\varphi \in F_\theta$ then, by $(**)$, we have

$$\exists \varphi' \in L \setminus F_\theta \quad \text{PA} + \theta \vdash \varphi \lor \varphi',$$

$$\text{PA} + \theta + \neg \alpha \lor \varphi \lor \varphi',$$

$$\text{PA} + \theta + \neg \alpha + \neg \varphi \lor \varphi',$$

$$\text{PA} + \theta + \neg \alpha \lor \varphi \lor \varphi'$$}
and

\[PA \vdash \theta \Rightarrow \alpha \lor \varphi', \]

but \(\theta \in F_\theta, \alpha \lor \varphi' \notin F_\theta \) and \(\theta \leq \alpha \lor \varphi' \). Contradiction!

If \(\varphi \in L \setminus F_\theta \), we have by (*)

\[\exists \gamma \in F_\theta \quad PA + \neg \alpha + \varphi \vdash \neg \gamma, \]

\[PA + \theta + \neg \alpha + \varphi \vdash \neg \gamma, \]

\[PA + \theta + \neg \alpha \vdash \neg \gamma, \]

and

\[PA \vdash \theta \land \gamma \Rightarrow \alpha, \]

but \(\alpha \notin F_\theta, \theta \land \gamma \in F_\theta \) and \(\theta \land \gamma \leq \alpha \). Contradiction! \(F_\theta \) has therefore no immediate predecessor.

(iv) Let \(B \) be a branch of the \(E \)-tree containing \(F_\theta \). \(F_\theta \) is a maximal element of \(E_\theta \), and therefore \(F_\theta \) is the greatest element of \(B \) containing \(\theta \). Let \(A = \{ F \in B \mid \theta \notin F \} \).

It is straightforward to check that \(F' = \bigcup_{F \in A} F \) is the lowest element of \(B \) which does not contain \(\theta \). \(F' \) is, of course, an immediate successor of \(F_\theta \).

Lemma 2.2. If \(F \) is any maximal element of the \(E \)-tree, then \(F \) has no immediate predecessor.

Proof. We use the same kind of argument as in the proof of Lemma 2.1(iii). Let \(\theta = 1 \). (We delete, of course, the requirement "\(PA + \neg \theta \) and \(PA \) have the same \(\forall \)-theorems" which is not used in the proof of Lemma 2.1(iii).) Now \(F_\theta \) becomes any maximal element of the \(E \)-tree.

3. The main result.

Theorem 3.1. The \(E \)-tree is not homogeneous.

Proof. This is an immediate consequence of Lemmas 2.1 and 2.2, for, in the notation of Lemma 2.1, \(F_\theta \) and its immediate successor \(F' \) are neither minimal nor maximal and yet cannot be exchanged by an automorphism of the \(E \)-tree.

References

Department of Mathematics, University of Brussels, 1050 Brussels, Belgium