Inner points and breadth in certain compact semilattices

Authors:
D. R. Brown and J. W. Stepp

Journal:
Proc. Amer. Math. Soc. **84** (1982), 581-587

MSC:
Primary 22A26; Secondary 22A15, 54H12

MathSciNet review:
643754

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A point is inner if there exists an open set containing such that for each open set with , the inclusion homomorphism : is nontrivial. In this note it is proved that, if is a compact, chainwise connected topological semilattice of codimension , and is a point of breadth , then is an inner point.

**[1]**Lee W. Anderson,*On the breadth and co-dimension of a topological lattice*, Pacific J. Math.**9**(1959), 327–333. MR**0105465****[2]**Kirby A. Baker and Albert R. Stralka,*Compact, distributive lattices of finite breadth*, Pacific J. Math.**34**(1970), 311–320. MR**0282895****[3]**Dennison R. Brown,*Topological semilattices on the two-cell*, Pacific J. Math.**15**(1965), 35–46. MR**0176453****[4]**Haskell Cohen,*A cohomological definition of dimension for locally compact Hausdorff spaces*, Duke Math. J.**21**(1954), 209–224. MR**0066637****[5]**Gerhard Gierz, Karl Heinrich Hofmann, Klaus Keimel, Jimmie D. Lawson, Michael W. Mislove, and Dana S. Scott,*A compendium of continuous lattices*, Springer-Verlag, Berlin-New York, 1980. MR**614752****[6]**Karl Heinrich Hofmann and Paul S. Mostert,*Elements of compact semigroups*, Charles E. Merr ll Books, Inc., Columbus, Ohio, 1966. MR**0209387****[7]**R. J. Koch,*Arcs in partially ordered spaces*, Pacific J. Math.**9**(1959), 723–728. MR**0108553****[8]**Jimmie D. Lawson,*The relation of breadth and co-dimension in topological semilattices.*, Duke Math. J.**37**(1970), 207–212. MR**0258687****[9]**J. D. Lawson,*The relation of breadth and codimension in topological semilattices. II*, Duke Math. J.**38**(1971), 555–559. MR**0282891****[10]**Jimmie D. Lawson,*A generalized version of the Vietoris-Begle theorem*, Fund. Math.**65**(1969), 65–72. MR**0248805****[11]**J. Lason and B. Madison,*Peripheral and inner points*, Fund. Math.**69**(1970), 253–266. MR**0275418****[12]**J. Lawson and B. Madison,*Peripherality in semigroups*, Semigroup Forum**1**(1970), no. 2, 128–142. MR**0265504****[13]**Edwin H. Spanier,*Algebraic topology*, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR**0210112****[14]**J. W. Stepp,*Semilattices which are embeddable in a product of 𝑚𝑖𝑛 intervals*, Proc. Amer. Math. Soc.**28**(1971), 81–86. MR**0276147**, 10.1090/S0002-9939-1971-0276147-1**[15]**A. D. Wallace,*Acyclicity of compact connected semigroups*, Fund. Math.**50**(1961/1962), 99–105. MR**0132533**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
22A26,
22A15,
54H12

Retrieve articles in all journals with MSC: 22A26, 22A15, 54H12

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1982-0643754-0

Keywords:
Inner points,
codimension

Article copyright:
© Copyright 1982
American Mathematical Society