Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A system of quadrics describing the orbit of the highest weight vector


Author: Woody Lichtenstein
Journal: Proc. Amer. Math. Soc. 84 (1982), 605-608
MSC: Primary 14M15; Secondary 15A75, 20G05
DOI: https://doi.org/10.1090/S0002-9939-1982-0643758-8
MathSciNet review: 643758
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a complex semisimple Lie group acting irreducibly on a finite dimensional vector space $ V$. A simple method is given for constructing a system of quadratic equations which defines the orbit of the highest weight vector in the projective space $ PV$.


References [Enhancements On Off] (What's this?)

  • [1] D. Drucker, Exceptional Lie algebras and the structure of Hermitian symmetric spaces, Mem. Amer. Math. Soc. No. 208, 1978. MR 0499340 (58:17239)
  • [2] H. Freudenthal, Sur le groupe exceptionnel $ {E_7}$, Nederl. Akad. Wetensch. Proc. Ser. A 56 (1953), 81-89. MR 0054609 (14:948a)
  • [3] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley, New York, 1978. MR 507725 (80b:14001)
  • [4] N. Jacobson, Structure and representations of Jordan algebras, Amer. Math. Soc., Providence, R. I., 1968. MR 0251099 (40:4330)
  • [5] A. Lichnerowicz, Sur les espaces homogènes Kählériens, C. R. Acad. Sci. Paris 237 (1953), 695-697. MR 0066016 (16:519b)
  • [6] R. Marlin, Anneaux de Chow des groupes algébriques $ {\text{Su}}(n)$, $ {\text{Sp}}(n)$, $ {\text{SO}}(n)$, $ {\text{Spin}}(n)$, $ {G_2}$, $ {F_4}$, C. R. Acad. Sci. Paris 279 (1974), 119-122. MR 0347820 (50:321)
  • [7] D. Montgomery, Simply connected homogeneous spaces, Proc. Amer. Math. Soc. 1 (1950), 467-469. MR 0037311 (12:242c)
  • [8] J. P. Serre, Représentations linéaires et espaces homogènes Kählériens des groupes de Lie compacts, Séminaire Bourbaki No. 100, 1954.
  • [9] J. Tits, Le plan projectif des octaves et les groupes exceptionnels $ {E_6}$ et $ {E_7}$, Acad. Roy. Belg. Bull. Cl. Sci. 40 (1954), 29-40. MR 0062749 (16:11g)
  • [10] -, Sur certaines classes d'espaces homogènes de groupes de Lie, Acad. Roy. Belg. Cl. Sci. Mem. Collect. 29 (1955-56).
  • [11] H. C. Wang, Closed manifolds with homogeneous complex structure, Amer. J. Math. 76 (1954), 1-32. MR 0066011 (16:518a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 14M15, 15A75, 20G05

Retrieve articles in all journals with MSC: 14M15, 15A75, 20G05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1982-0643758-8
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society