Nonnegative rectangular matrices having certain nonnegative -weighted group inverses

Author:
S. K. Jain

Journal:
Proc. Amer. Math. Soc. **85** (1982), 1-9

MSC:
Primary 15A09; Secondary 15A48

MathSciNet review:
647886

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Nonnegative rectangular matrices having nonnegative -weighted group inverses are characterized. Our techniques suggest an interesting approach to extend the earlier known results on -monotone square matrices to rectangular ones. We also answer a question of characterizing nonnegative matrices having a nonnegative solution where (1) , (2) , (3) is 0-symmetric, (4) is 0-symmetric. In particular, we obtain theorems of Berman-Plemmons and Plemmons-Cline characterizing nonnegative matrices with a nonnegative Moore-Penrose inverse. Matrices having nonnegative generalized inverses are of interest in the study of finding nonnegative best approximate solutions of linear systems. Such matrices are of considerable interest in statistics, numerical linear algebra and mathematical economics.

**[1]**Abraham Berman and Robert J. Plemmons,*Inverses of nonnegative matrices*, Linear and Multilinear Algebra**2**(1974), 161–172. MR**0364282****[2]**R. J. Plemmons and R. E. Cline,*The generalized inverse of a nonnegative matrix*, Proc. Amer. Math. Soc.**31**(1972), 46–50. MR**0285541**, 10.1090/S0002-9939-1972-0285541-5**[3]**Randall E. Cline and T. N. E. Greville,*A Drazin inverse for rectangular matrices*, Linear Algebra Appl.**29**(1980), 53–62. MR**562749**, 10.1016/0024-3795(80)90230-X**[4]**Peter Flor,*On groups of non-negative matrices*, Compositio Math.**21**(1969), 376–382. MR**0257115****[5]**S. K. Jain, V. K. Goel, and Edward K. Kwak,*Nonnegative 𝑚th roots of nonnegative 0-symmetric idempotent matrices*, Linear Algebra Appl.**23**(1979), 37–51. MR**520611**, 10.1016/0024-3795(79)90091-0**[6]**S. K. Jain, V. K. Goel, and Edward K. Kwak,*Nonnegative matrices having same nonnegative Moore-Penrose and group inverses*, Linear and Multilinear Algebra**7**(1979), no. 1, 59–72. MR**523649**, 10.1080/03081087908817260**[7]**S. K. Jain, Edward K. Kwak, and V. K. Goel,*Decomposition of nonnegative group-monotone matrices*, Trans. Amer. Math. Soc.**257**(1980), no. 2, 371–385. MR**552264**, 10.1090/S0002-9947-1980-0552264-3**[8]**S. K. Jain and L. E. Snyder,*Nonnegative 𝜆-monotone matrices*, SIAM J. Algebraic Discrete Methods**2**(1981), no. 1, 66–76. MR**604512**, 10.1137/0602009

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
15A09,
15A48

Retrieve articles in all journals with MSC: 15A09, 15A48

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1982-0647886-2

Keywords:
Nonnegative matrices,
-weighted group inverse

Article copyright:
© Copyright 1982
American Mathematical Society