Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

On holomorphic functions satisfying $ \,f(z)(1-z\sp{2})\leq 1$ in the unit disc


Author: Karl-Joachim Wirths
Journal: Proc. Amer. Math. Soc. 85 (1982), 19-23
MSC: Primary 30D50; Secondary 30B40, 30H05
MathSciNet review: 647889
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f$ be holomorphic in $ D = \{ \left. z \right\vert\left\vert z \right\vert < 1\} $, $ \left\vert {f(z)} \right\vert(1 - {\left\vert z \right\vert^2}) \leqslant 1$ in $ D$, $ {\overline {\lim } _{\left\vert z \right\vert \to 1}}\left\vert {f(z)} \right\vert(1 - {\left\vert z \right\vert^2}) < 1$ and $ L(f): = \{ \left. z \right\vert\left\vert {f(z)} \right\vert(1 - {\left\vert z \right\vert^2}) = 1\} $. It is shown that the set $ L(f)$ consists of one simple closed curve $ \gamma $ and a finite number of points in the bounded component of $ {\mathbf{C}}\backslash \gamma $ if $ L(f)$ is an infinite set.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30D50, 30B40, 30H05

Retrieve articles in all journals with MSC: 30D50, 30B40, 30H05


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1982-0647889-8
PII: S 0002-9939(1982)0647889-8
Keywords: Holomorphic function, algebraic function, identity principle
Article copyright: © Copyright 1982 American Mathematical Society