Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Weighted norm inequalities for the Hardy-Littlewood maximal function


Author: Wo Sang Young
Journal: Proc. Amer. Math. Soc. 85 (1982), 24-26
MSC: Primary 42B25; Secondary 46E30
DOI: https://doi.org/10.1090/S0002-9939-1982-0647890-4
MathSciNet review: 647890
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A characterization is obtained for weight functions $ \upsilon $ for which the Hardy-Littlewood maximal operator is bounded from $ {L^p}({{\mathbf{R}}^n},wdx)$ to $ {L^p}({{\mathbf{R}}^n},\upsilon dx)$ for some nontrivial $ w$.


References [Enhancements On Off] (What's this?)

  • [1] L. Carleson and P. W. Jones, Weighted norm inequalities and a theorem of Koosis, Mittag-Leffler Rep. No. 2, 1981.
  • [2] C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107-115. MR 0284802 (44:2026)
  • [3] B. Muckenhoupt, Weighted norm inequalities for classical operators, Proc. Sympos. Pure Math., vol. 35, part 1, Amer. Math. Soc., Providence, R. I., 1979, pp. 69-83. MR 545240 (80i:42015)
  • [4] J. L. Rubio de Francia, Boundedness of maximal functions and singular integrals in weighted $ {L^p}$ spaces, Proc. Amer. Math. Soc. 83 (1981), 673-679. MR 630035 (83a:42018)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42B25, 46E30

Retrieve articles in all journals with MSC: 42B25, 46E30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1982-0647890-4
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society