Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A fixed point theorem for the sum of two mappings

Author: Olga Hadžić
Journal: Proc. Amer. Math. Soc. 85 (1982), 37-41
MSC: Primary 47H10
MathSciNet review: 647893
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A generalization of a fixed point theorem of Rzepecki is proved and it is shown that in a paranormed space $ E$ this result yields, under certain circumstances, solutions to the equation $ x = Tx + Sx$ for $ T:E \to E$ either continuous and affine or a generalized contraction, and $ S:K \subseteq E \to E$ compact.

References [Enhancements On Off] (What's this?)

  • [1] O. Hadžić, Fixed point theorems for multivalued mappings in topological vector spaces, Glas. Mat. Ser. III 14 (33) (1980), 113-120. MR 586295 (82a:47054)
  • [2] S. Kasahara, On formulations of topological linear spaces by topological semifields, Math. Japon. 19 (1974), 121-134. MR 0367604 (51:3846)
  • [3] V. E. Matusov, Obobshcheniye teoremii $ o$ nepodvizhnoi tochke Tikhonova, Dokl. Akad. Nauk UzSSR 1978, no. 2, 12-14. MR 0513066 (58:23806)
  • [4] A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 28 (1969), 326-329. MR 0250291 (40:3530)
  • [5] T. Riedrich, Vorlesungen über nichtlineare Operatoren-gleichungen, Teubner, Leipzig, 1976. MR 0467414 (57:7273)
  • [6] B. Rzepecki, Remarks on Schauder's Fixed Point Theorem, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 27 (1976), 473-480. MR 560183 (81b:47073)
  • [7] K. Zima, On the Schauder's fixed point theorem with respect to paranormed space, Comment. Math. Prace Mat. 19 (1977), 421-423. MR 0458260 (56:16463)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47H10

Retrieve articles in all journals with MSC: 47H10

Additional Information

Keywords: Fixed point, paranormed space, $ \Phi $ paranormed space, generalized contraction
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society