Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On boundary values of holomorphic functions on balls


Author: Josip Globevnik
Journal: Proc. Amer. Math. Soc. 85 (1982), 61-64
MSC: Primary 32A40
DOI: https://doi.org/10.1090/S0002-9939-1982-0647898-9
MathSciNet review: 647898
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is a result of Agranovski and Valski for which Nagel and Rudin, and Stout have given alternate proofs, that if $ B$ is the open unit ball in $ {{\mathbf{C}}^n}$ and if $ f \in C(\partial B)$ has the property that for every complex line $ \Lambda \subset {{\mathbf{C}}^n}$, $ f\left\vert {(\Lambda \cap \partial B)} \right.$ has a continuous extension to $ \Lambda \cap \bar B$ which is holomorphic in $ \Lambda \cap B$, then $ f$ has a continuous extension to $ \bar B$ which is holomorphic in $ B$. In the paper we give an easier, more geometric proof of this result and then prove the local version of this result.


References [Enhancements On Off] (What's this?)

  • [1] M. L. Agranovski and R. E. Valski, Maximality of invariant algebras of functions, Siberian Math. J. 12 (1971), 1-7. MR 0285911 (44:3128)
  • [2] A. Nagel and W. Rudin, Moebius-invariant function spaces on balls and spheres, Duke Math. J. 43 (1976), 841-865. MR 0425178 (54:13135)
  • [3] W. Rudin, Function theory in polydiscs, Benjamin, New York, 1969. MR 0255841 (41:501)
  • [4] -, Function theory in the unit ball of $ {{\mathbf{C}}^n}$, Die Grundlehren der Math. Wissenschaften, vol. 241, Springer-Verlag, New York and Berlin, 1980.
  • [5] E. L. Stout, The boundary values of holomorphic functions of several complex variables, Duke Math. J. 44 (1977), 105-108. MR 0437800 (55:10722)
  • [6] -, Analytic continuation and boundary continuity of functions of several complex variables, Proc. Roy. Soc. Edinburgh Sect. 89A (1981). 63-74. MR 628129 (83c:32021)
  • [7] B. V. Šabat, Introduction to complex analysis, "Nauka", Moscow, 1969. MR 0584932 (58:28443a)
  • [8] B. M. Weinstock, An approximation theorem for $ \bar \partial $-closed forms of type $ (n,n - 1)$, Proc. Amer. Math. Soc. 26 (1970), 625-628. MR 0265638 (42:547)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32A40

Retrieve articles in all journals with MSC: 32A40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1982-0647898-9
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society