Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On the Liouville theorem for harmonic maps

Author: Hyeong In Choi
Journal: Proc. Amer. Math. Soc. 85 (1982), 91-94
MSC: Primary 53C99; Secondary 58E20
MathSciNet review: 647905
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose $ M$ and $ N$ are complete Riemannian manifolds; $ M$ with Ricci curvature bounded below by $ - A$, $ A \geqslant 0$, $ N$ with sectional curvature bounded above by a positive constant $ K$. Let $ u:M \to N$ be a harmonic map such that $ u(M) \subset {B_R}({y_0})$. If $ {B_R}({y_0})$ lies inside the cut locus of $ {y_0}$ and $ R < \pi /2\sqrt K $, then the energy density $ e(u)$ of $ u$ is bounded by a constant depending only on $ A$, $ K$ and $ R$. If $ A = 0$, then $ u$ is a constant map.

References [Enhancements On Off] (What's this?)

  • [1] S.-Y. Cheng, Liouville theorem for harmonic maps, Proc. Sympos. Pure Math., vol. 36, Amer. Math. Soc., Providence, R. I., 1980, pp. 147-151. MR 573431 (81i:58021)
  • [2] R. Greene and H. Wu, Function theory of manifolds which possess a pole, Lecture Notes in Math., vol. 699, Springer-Verlag, Berlin and New York, 1979. MR 521983 (81a:53002)
  • [3] S. Hildebrandt, H. Kaul and K.-O. Widman, An existence theorem for harmonic mappings of Riemannian manifolds, Acta Math. 138 (1977), 1-16. MR 0433502 (55:6478)
  • [4] S.-T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228. MR 0431040 (55:4042)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C99, 58E20

Retrieve articles in all journals with MSC: 53C99, 58E20

Additional Information

Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society