Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

On the Liouville theorem for harmonic maps


Author: Hyeong In Choi
Journal: Proc. Amer. Math. Soc. 85 (1982), 91-94
MSC: Primary 53C99; Secondary 58E20
MathSciNet review: 647905
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose $ M$ and $ N$ are complete Riemannian manifolds; $ M$ with Ricci curvature bounded below by $ - A$, $ A \geqslant 0$, $ N$ with sectional curvature bounded above by a positive constant $ K$. Let $ u:M \to N$ be a harmonic map such that $ u(M) \subset {B_R}({y_0})$. If $ {B_R}({y_0})$ lies inside the cut locus of $ {y_0}$ and $ R < \pi /2\sqrt K $, then the energy density $ e(u)$ of $ u$ is bounded by a constant depending only on $ A$, $ K$ and $ R$. If $ A = 0$, then $ u$ is a constant map.


References [Enhancements On Off] (What's this?)

  • [1] Shiu Yuen Cheng, Liouville theorem for harmonic maps, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979) Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., 1980, pp. 147–151. MR 573431
  • [2] R. E. Greene and H. Wu, Function theory on manifolds which possess a pole, Lecture Notes in Mathematics, vol. 699, Springer, Berlin, 1979. MR 521983
  • [3] Stéfan Hildebrandt, Helmut Kaul, and Kjell-Ove Widman, An existence theorem for harmonic mappings of Riemannian manifolds, Acta Math. 138 (1977), no. 1-2, 1–16. MR 0433502
  • [4] Shing Tung Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201–228. MR 0431040

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C99, 58E20

Retrieve articles in all journals with MSC: 53C99, 58E20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1982-0647905-3
Article copyright: © Copyright 1982 American Mathematical Society