Quadratic Morse-Smale vector fields which are not structurally stable

Authors:
Carmen Chicone and Douglas S. Shafer

Journal:
Proc. Amer. Math. Soc. **85** (1982), 125-134

MSC:
Primary 58F09; Secondary 34D30

DOI:
https://doi.org/10.1090/S0002-9939-1982-0647911-9

MathSciNet review:
647911

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An example is given of a quadratic system in the plane which is Morse-Smale but not structurally stable. Also, it is proved that no such example exists for a quadratic system which is a gradient.

**[1]**A. Andronov et al.,*Qualitative theory of second-order dynamic systems*, Wiley, New York, 1973.**[2]**-,*Theory of bifurcations of dynamic systems on the plane*, Wiley, New York, 1973.**[3]**C. Chicone,*Quadratic gradients on the plane are generically Morse-Smale*, J. Differential Equations**33**(1979), 159-166. MR**542667 (80g:58036)****[4]**E. Gonzalez Velasco,*Generic properties of polynomial vector fields at infinity*, Trans. Amer. Math. Soc.**143**(1969), 201-222. MR**0252788 (40:6005)****[5]**M. Hirsch,*Differential topology*, Springer-Verlag, New York, 1976. MR**0448362 (56:6669)****[6]**J. Kotus, M. Krych and Z. Nitecki,*Global structural stability of flows on open surfaces*, Mem. Amer. Math. Soc. (to appear). MR**653093 (83h:58055)****[7]**M. Krych and Z. Nitecki, Private Communication.**[8]**J. Palis and S. Smale,*Structural stability theorems*, Global Analysis, Part I (S. S. Chern and S. Smale, Eds.), Proc. Sympos. Pure Math., vol. 14, Amer. Math. Soc., Providence, R. I., 1970, pp. 223-231. MR**0267603 (42:2505)****[9]**M. Piexoto,*Structural stability on two dimensional manifolds*, Topology**1**(1962), 101-120. MR**0142859 (26:426)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
58F09,
34D30

Retrieve articles in all journals with MSC: 58F09, 34D30

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1982-0647911-9

Keywords:
Morse-Smale,
structural stability,
quadratic system

Article copyright:
© Copyright 1982
American Mathematical Society