Homological embedding properties of the fibers of a map and the dimension of its image

Author:
John J. Walsh

Journal:
Proc. Amer. Math. Soc. **85** (1982), 135-138

MSC:
Primary 54F45; Secondary 55M10, 58B05

DOI:
https://doi.org/10.1090/S0002-9939-1982-0647912-0

MathSciNet review:
647912

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A relationship is established between the homological codimension of the point inverses of a map and the dimension of its image. An infinite-dimensional version leads to the conclusion that the image of a proper map defined on Hilbert space cannot be countable dimensional. A finite-dimensional version yields: if is a proper map, is a -orientable -manifold without boundary, and , then there is a point and an integer such that .

**[1]**F. D. Ancel,*On ANR's and cell-like maps*, Seminar Notes, University of Oklahoma, 1980.**[2]**R. D. Anderson,*Topological properties of the Hilbert cube and the infinite product of open intervals*, Trans. Amer. Math. Soc.**126**(1967), 200–216. MR**0205212**, https://doi.org/10.1090/S0002-9947-1967-0205212-3**[3]**T. A. Chapman,*Lectures on Hilbert cube manifolds*, American Mathematical Society, Providence, R. I., 1976. Expository lectures from the CBMS Regional Conference held at Guilford College, October 11-15, 1975; Regional Conference Series in Mathematics, No. 28. MR**0423357****[4]**T. A. Chapman,*Dense sigma-compact subsets of infinite-dimensional manifolds*, Trans. Amer. Math. Soc.**154**(1971), 399–426. MR**0283828**, https://doi.org/10.1090/S0002-9947-1971-0283828-7**[5]**Robert J. Daverman,*Detecting the disjoint disks property*, Pacific J. Math.**93**(1981), no. 2, 277–298. MR**623564****[6]**Robert J. Daverman and John J. Walsh,*Čech homology characterizations of infinite-dimensional manifolds*, Amer. J. Math.**103**(1981), no. 3, 411–435. MR**618319**, https://doi.org/10.2307/2374099**[7]**Witold Hurewicz and Henry Wallman,*Dimension Theory*, Princeton Mathematical Series, v. 4, Princeton University Press, Princeton, N. J., 1941. MR**0006493****[8]**Edwin H. Spanier,*Algebraic topology*, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR**0210112****[9]**I. A. Vaiĭnšteĭn,*On closed mappings of metric spaces*, Doklady Akad. Nauk SSSR (N.S.)**57**(1947), 319–321 (Russian). MR**0022067**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54F45,
55M10,
58B05

Retrieve articles in all journals with MSC: 54F45, 55M10, 58B05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1982-0647912-0

Keywords:
-set,
infinite codimension,
countable dimensional,
homological embedding properties,
dimension,
Hilbert space,
Hilbert cube

Article copyright:
© Copyright 1982
American Mathematical Society