Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A space of pointwise countable type and perfect maps

Author: Haruto Ohta
Journal: Proc. Amer. Math. Soc. 85 (1982), 139-140
MSC: Primary 54D20; Secondary 54C10
MathSciNet review: 647913
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: There exists a Lindelöf space, of pointwise countable type, which does not admit a perfect map onto any space in which every point is $ {G_\delta }$.

References [Enhancements On Off] (What's this?)

  • [A] A. V. Arhangel'skiĭ, Bicompact sets and the topology of spaces, Trudy Moskov. Mat. Obšč. 13 (1965), 3-55 = Trans. Moscow Math. Soc. 13 (1965), 1-62. MR 0195046 (33:3251)
  • [B] D. K. Burke, Closed mappings, Surveys in General Topology (G. Reed, Ed.), Academic Press, New York, 1980, pp. 1-32. MR 564098 (81c:54014)
  • [D] C. H. Dowker, Local dimension of normal spaces, Quart. J. Math. Oxford (2) 6 (1955), 101-120. MR 0086286 (19:157a)
  • [F] Z. Frolik, On the topological product of paracompact spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 8 (1960), 747-750. MR 0125559 (23:A2859)
  • [O] R. C. Olson, $ Bi$-quotient maps, countably $ bi$-sequential spaces and related topics, General Topology Appl. 4 (1974), 1-28. MR 0365463 (51:1715)
  • [R] M. E. Rudin, Lectures on set theoretic topology, CBMS Regional Conf. Ser. Math., vol. 23, Amer. Math. Soc., Providence, R.I., 1975. MR 0367886 (51:4128)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54D20, 54C10

Retrieve articles in all journals with MSC: 54D20, 54C10

Additional Information

Keywords: Pointwise countable type, perfect map, Lindelöf space
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society