Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Globalization of some local properties in Krull domains

Author: D. D. Anderson
Journal: Proc. Amer. Math. Soc. 85 (1982), 141-145
MSC: Primary 13F15; Secondary 13C12
MathSciNet review: 652428
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ R$ be a Krull domain. It is shown that a nonzero locally principal ideal is invertible. This is used to show that $ {\text{Cl}}(R)/{\text{Pic}}(R)$ is torsion if and only if $ {\text{Cl}}({R_M})$ is torsion for each maximal ideal $ M$ of $ R$. Here $ {\text{Cl}}(R)$ and $ {\text{Pic}}(R)$ denote the divisor class group and Picard group of $ R$, respectively.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13F15, 13C12

Retrieve articles in all journals with MSC: 13F15, 13C12

Additional Information

PII: S 0002-9939(1982)0652428-1
Keywords: Krull domain, locally factorial, divisor class group
Article copyright: © Copyright 1982 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia