On endomorphisms of abelian topological groups
Authors:
Eli Katz and Sidney A. Morris
Journal:
Proc. Amer. Math. Soc. 85 (1982), 181183
MSC:
Primary 22B05; Secondary 16A65
MathSciNet review:
652437
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A family of continuous endomorphisms of a topological group is said to be small if for every subgroup of of cardinality there exists an element such that . M. I. Kabenjuk [5] proved that if is a compact connected Hausdorff abelian group of countable weight then every countable family of nontrivial endomorphisms of is small. He asked if "compact" can be replaced by "complete". In this note the answer is given in the negative, but it is shown that "compact" can be replaced by "locally compact".
 [1]
László
Fuchs, Infinite abelian groups. Vol. II, Academic Press, New
YorkLondon, 1973. Pure and Applied Mathematics. Vol. 36II. MR 0349869
(50 #2362)
 [2]
David
C. Hunt and Sidney
A. Morris, Free subgroups of free topological groups,
Proceedings of the Second International Conference on the Theory of Groups
(Australian Nat. Univ., Canberra, 1973) Springer, Berlin, 1974,
pp. 377–387. Lecture Notes in Math., Vol. 372. MR 0352317
(50 #4804)
 [3]
M.
I. Kabenjuk, Finite automorphism groups of topological groups,
Algebra i Logika 13 (1974), 291–299, 364 (Russian).
MR
0369491 (51 #5724)
 [4]
, Groups of automorphisms of topological groups, Algebra Symposium Proceedings. I, Gomel, 1975. (Russian)
 [5]
M.
I. Kabenjuk, Some topologies on abelian group related to the ring
of its endomorphisms, Topology, Vol. II (Proc. Fourth Colloq.,
Budapest, 1978) Colloq. Math. Soc. János Bolyai, vol. 23,
NorthHolland, AmsterdamNew York, 1980, pp. 705–712. MR 588818
(82d:16030)
 [6]
John
Mack, Sidney
A. Morris, and Edward
T. Ordman, Free topological groups and the
projective dimension of a locally compact abelian group, Proc. Amer. Math. Soc. 40 (1973), 303–308. MR 0320216
(47 #8755), http://dx.doi.org/10.1090/S00029939197303202166
 [7]
Sidney
A. Morris, Varieties of topological groups and left adjoint
functors, J. Austral. Math. Soc. 16 (1973),
220–227. Collection of articles dedicated to the memory of Hanna
Neumann, II. MR
0333059 (48 #11384)
 [8]
Sidney
A. Morris, Pontryagin duality and the structure of locally compact
abelian groups, Cambridge University Press, CambridgeNew
YorkMelbourne, 1977. London Mathematical Society Lecture Note Series, No.
29. MR
0442141 (56 #529)
 [9]
Sidney
A. Morris, Varieties of topological groups, Bull. Austral.
Math. Soc. 1 (1969), 145–160. MR 0259010
(41 #3655a)
 [10]
R.
J. Wille, The existence of a topological group with automorphism
group 𝐶₇, Quart. J. Math. Oxford Ser. (2)
18 (1967), 53–57. MR 0228617
(37 #4197)
 [1]
 L. Fuchs, Infinite abelian groups. Vol. II, Academic Press, New York, 1973. MR 0349869 (50:2362)
 [2]
 David C. Hunt and Sidney A. Morris, Free subgroups of topological groups, Proc. Second Internat. Conf. Theory of Groups, Canberra, Lecture Notes in Math., vol. 372, SpringerVerlag, Berlin and New York, 1974, pp. 377387. MR 0352317 (50:4804)
 [3]
 M. I. Kabenjuk, Finite groups of automorphisms of topological groups, Algebra and Logic 13 (1974), 291299. (Russian) MR 0369491 (51:5724)
 [4]
 , Groups of automorphisms of topological groups, Algebra Symposium Proceedings. I, Gomel, 1975. (Russian)
 [5]
 , Some topologies on abelian groups related to the ring of its endomorphisms, Colloquia Mathematica, Societatis János Bolyai 23 Topology (Budapest), 1978, pp. 705712. MR 588818 (82d:16030)
 [6]
 John Mack, Sidney A. Morris and Edward T. Ordman, Free topological groups and the projective dimension of a locally compact abelian group, Proc. Amer. Math. Soc. 40 (1973), 303308. MR 0320216 (47:8755)
 [7]
 Sidney A. Morris, Varieties of topological groups and left adjoint functions, J. Austral. Math. Soc. 16 (1973), 220227. MR 0333059 (48:11384)
 [8]
 , Pontryagin duality and the structure of locally compact abelian groups, London Math. Soc. Lecture Notes Series, no. 29, Cambridge Univ. Press, London, 1977. MR 0442141 (56:529)
 [9]
 , Varieties of topological groups, Bull. Austral. Math. Soc. 1 (1969), 145160. MR 0259010 (41:3655a)
 [10]
 R. J. Wille, The existence of a topological group with automorphism group , Quart J. Math. Oxford Ser. (2) 18 (1967), 5357. MR 0228617 (37:4197)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
22B05,
16A65
Retrieve articles in all journals
with MSC:
22B05,
16A65
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939198206524372
PII:
S 00029939(1982)06524372
Keywords:
Endomorphism ring,
topological group,
abelian group,
representable ring
Article copyright:
© Copyright 1982
American Mathematical Society
