Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On functions in the ball algebra


Author: P. Wojtaszczyk
Journal: Proc. Amer. Math. Soc. 85 (1982), 184-186
MSC: Primary 32A10; Secondary 46J15
DOI: https://doi.org/10.1090/S0002-9939-1982-0652438-4
MathSciNet review: 652438
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that there exists a function in a ball algebra such that almost every slice function has a series of Taylor coefficients divergent with every power $ p < 2$.


References [Enhancements On Off] (What's this?)

  • [1] J. Fournier, An interpolation problem for coefficients of $ {H_\infty }$ functions, Proc. Amer. Math. Soc. 42 (1972), 402-408. MR 0330469 (48:8806)
  • [2] A. Pełczyński, Banach spaces of analytic functions and absolutely summing operators, CBMS Regional Conference Series No. 30, Amer. Math. Soc., Providence, R. I. 1977. MR 0511811 (58:23526)
  • [3] W. Rudin, Function theory in the unit ball of $ {C^n}$, Springer-Verlag, New York, 1980. MR 601594 (82i:32002)
  • [4] J. Ryll and P. Wojtaszczyk, On homogeneous polynomials on a complex ball, Trans. Amer. Math. Soc. (to appear). MR 684495 (84f:32004)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32A10, 46J15

Retrieve articles in all journals with MSC: 32A10, 46J15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1982-0652438-4
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society