Nomographic functions are nowhere dense

Author:
R. Creighton Buck

Journal:
Proc. Amer. Math. Soc. **85** (1982), 195-199

MSC:
Primary 41A63; Secondary 41A30

DOI:
https://doi.org/10.1090/S0002-9939-1982-0652441-4

MathSciNet review:
652441

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A function of variables is nomographic if it can be represented in the format

**[1]**V. I. Arnold,*On the representability of functions of two variables in the form*, Uspehi Mat. Nauk**12**(1957), 119-121. (Russian) MR**0090623 (19:841e)****[2]**-,*Some questions on approximation and representation of functions*, Proc. Internat. Congr. Math., 1958, Cambridge Univ. Press, New York, 1960. MR**0121454 (22:12192)****[3]**R. C. Buck,*Approximate complexity and functional representation*, J. Math. Anal. Appl.**70**(1979), 280-298. MR**541075 (83i:26008)****[4]**-,*Characterization of classes of functions*, Amer. Math. Monthly**88**(1981), 139-142. MR**606252 (82f:26017)****[5]**Raouf Doss,*On the representation of the continuous functions of two variables by means of addition and continuous functions of one variable*, Colloq. Math.**10**(1963), 249-259. MR**0155949 (27:5882)****[6]**B. L. Fridman,*Nowhere denseness of the space of linear superpositions of functions of several variables*, Izv. Akad. Nauk SSSR Ser. Mat.**36**(1972), 814-846. (Russian) MR**0318422 (47:6969)****[7]**G. M. Henkin,*Linear superpositions of continuous differentiable functions*, Dokl. Akad. Nauk SSSR**157**(1964), 288-290. (Russian) MR**0166319 (29:3596)****[8]**Robert Kaufman,*Linear superpositions of smooth functions*, Proc. Amer. Math. Soc.**46**(1974), 360-362. MR**0352374 (50:4861)****[9]**A. N. Kolmogorov,*On the representation of continuous functions of several variables by superpositioins of continuous functions of one variable, and addition*, Dokl. Akad. Nauk SSSR**114**(1957), 953-957. (Russian) MR**0111809 (22:2669)****[10]**G. G. Lorentz,*The 13th problem of Hilbert*, Mathematical Developments Arising from Hilbert's Problems, Proc. Sympos. Pure Math., vol. 28, Amer. Math. Soc., Providence, R. I., 1976. MR**0507425 (58:22439)****[11]**David Sprecher,*A survey of solved and unsolved problems in the superposition of functions*, J. Approx. Theory**6**(1972), 123-134. MR**0348347 (50:845)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
41A63,
41A30

Retrieve articles in all journals with MSC: 41A63, 41A30

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1982-0652441-4

Keywords:
Superpositions,
Hilbert,
nowhere dense

Article copyright:
© Copyright 1982
American Mathematical Society