A UNIQUENESS RESULT IN CONFORMAL MAPPING. II

JAMES A. JENKINS

ABSTRACT. This paper gives an elementary proof of the result that for a function \(f \) in the family \(\Sigma \) the diameter of the complement of the image of \(|z| > 1 \) by \(w = f(z) \) attains its minimal value 2 only for \(f(z) = z + c \), \(c \) constant.

1. Some years ago the author gave the first published proof [2] of the result that, for a function \(f \) in the family \(\Sigma \) [1], the diameter of the complement of the image of \(|z| > 1 \) by \(w = f(z) \) attains its minimal value 2, then \(f(z) = z + c \) (\(c \) constant). While the proof is very simple, it utilizes results and concepts which would not normally be familiar to a student in a good basic course in Function Theory, which is the natural context for the above result. More recently Pfluger [3, 4] has given several versions of a proof of this result which seem to him to be more elementary. It appears that they also would require some digression from the material usually found in a Function Theory course. Our purpose here is to give an elementary proof in purely Function Theoretic terms.

2. LEMMA 1. Let \(f \in \Sigma \) have Laurent expansion about the point at infinity

\[
f(z) = z + c_0 + \sum_{n=1}^{\infty} c_n z^{-n}.
\]

Let the complement of the image of \(|z| > 1 \) under \(w = f(z) \) have diameter \(D \). Then \(D \geq 2 \) and a necessary condition for equality is \(c_{2n+1} = 0 \), \(n \) integral \(\geq 0 \).

Let \(D_r \) be the diameter of the image of \(|z| = r \), \(r > 1 \), under \(w = f(z) \); \(D_r^* = \max_{|z|=r} |f(z) - f(-z)| \). Evidently \(D_r \geq D_r^* \geq D \) and \(\lim_{r \to 1} D_r = D \). Further

\[
(D_r^*)^2 \geq \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta}) - f(-re^{i\theta})|^2 d\theta = 4r^2 + 4 \sum_{n=0}^{\infty} |c_{2n+1}|^2 r^{-2(2n+1)}.
\]

Thus \(D \geq 2 \) with equality only if \(c_{2n+1} = 0 \), \(n = 0, 1, 2, \ldots \).

The following lemma is found in [3].

LEMMA 2. Using the same notation as in Lemma 1, \(D_r \leq rD \), \(r > 1 \).

Let \(|z_1| = |z_2| = r \), \(r > 1 \), be such that \(|f(z_1) - f(z_2)| = D_r \) and let \(\Phi(z) = f(z_1 z_2^{-1} z) - f(z) \). Then for \(\rho > 1 \), \(\max_{|z|=\rho} |\Phi(z)| \leq D_\rho \). The function \(z^{-1} \Phi(z) \) is regular outside the unit circle (including the point at infinity) thus \(|z^{-1} \Phi(z)| \leq \rho^{-1} D_\rho \) in \(|z| \geq \rho \). Letting \(\rho \) tend to 1 we have \(|z^{-1} \Phi(z)| \leq D \) in \(|z| > 1 \). Thus \(D_r \leq rD \).

Received by the editors May 14, 1981.
1980 Mathematics Subject Classification. Primary 30C25, 30C55, 30C75.
1Research supported in part by the National Science Foundation.

© 1982 American Mathematical Society
0002-9939/81/0000-0300/$01.50
THEOREM. Let \(f \in \Sigma \) and let the complement of the image of \(|z| > 1\) under \(w = f(z) \) have diameter \(D \). Then \(D \geq 2 \) and \(D = 2 \) if and only if \(f(z) = z + c \), \(c \) constant.

It remains only to consider the possibility \(D = 2 \). If \(f(z) \) is not \(z + c \), let it have the Laurent expansion (1). By Lemma 1 the first nonzero coefficient beyond the constant term would be \(c_{2n} \), \(n \geq 1 \). By Lemmas 1 and 2, \(D_r = D_{r^*} = 2r \) thus \(|f(re^{i\theta}) - f(re^{i\omega})|^2 \) would be maximized for \(\varphi = \theta + \pi \) for all \(r > 1 \), \(\theta \) real and the partial derivative of this quantity with respect to \(\varphi \) evaluated at \(\varphi = \theta + \pi \) would be identically zero in this set. Inserting the expansion (1) for \(f \) the coefficient of \(r^{-2n+1} \) would be

\[
4ni(c_{2n}e^{-(2n+1)i\theta} - \bar{c}_{2n}e^{(2n+1)i\theta})
\]

which would imply the contradiction \(c_{2n} = 0 \).

REFERENCES

SCHOOL OF MATHEMATICS, THE INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY 08540

Current address: Department of Mathematics, Washington University, St. Louis, Missouri 63130