Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A Krasnoselskiĭ-type theorem for points of local nonconvexity


Author: Marilyn Breen
Journal: Proc. Amer. Math. Soc. 85 (1982), 261-266
MSC: Primary 52A10; Secondary 52A30
DOI: https://doi.org/10.1090/S0002-9939-1982-0652454-2
MathSciNet review: 652454
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ S$ be a compact connected set in $ {R^2}$, $ S$ not convex. Then $ S$ is starshaped if and only if every 3 points of local nonconvexity of $ S$ are clearly visible from a common point of $ S$. For $ k = 1$ or $ k = 2$, dimker $ S \geqslant $ $ k$ if and only if for some $ \in > 0$, every $ f(k) = \max \left\{ {3,6 - 2k} \right\}$ points of local nonconvexity of $ S$ are clearly visible from a common $ k$-dimensional $ \in $neighborhood in $ S$. Each result is best possible.


References [Enhancements On Off] (What's this?)

  • [1] Marilyn Breen, A quantitative version of Krasnosel'skii's theorem in $ {R^2}$, Pacific J. Math. 91 (1980), 31-37. MR 612886 (82j:52006)
  • [2] -, $ K$-dimensional intersections of convex sets and convex kernels, Discrete Math. 36 (1981), 233-237. MR 675355 (84f:52006)
  • [3] -, The dimension of the kernel of a planar set, Pacific J. Math. 82 (1979), 15-21. MR 549829 (81h:52006)
  • [4] K. J. Falconer, The dimension of the kernel of a compact starshaped set, Bull. London Math. Soc. 9 (1977), 313-316. MR 0467536 (57:7392)
  • [5] Meir Katchalski, The dimension of intersections of convex sets, Israel J. Math. 10 (1971), 465470. MR 0305237 (46:4367)
  • [6] M. A. Krasnosel'skii, Sur un critère pour qu'un domain soit étoilé, Math. Sb. 19 (61) (1946), 309-310. MR 0020248 (8:525a)
  • [7] Nick M. Stavrakas, The dimension of the convex kernel and points of local nonconvexity, Proc. Amer. Math. Soc. 34 (1972), 222-224. MR 0298549 (45:7601)
  • [8] H. Tietze, Über Konvexheit im kleinen und im grossen und über gewisse den Punkten einer Menge zugeodnete Dimensionzahlen, Math. Z. 29 (1928), 697-707. MR 1544985
  • [9] F. A Valentine, Convex sets, McGraw-Hill, New York, 1964. MR 0170264 (30:503)
  • [10] -, Local convexity and $ {L_n}$ sets, Proc. Amer. Math. Soc. 16 (1965), 1305-1310.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 52A10, 52A30

Retrieve articles in all journals with MSC: 52A10, 52A30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1982-0652454-2
Keywords: Starshaped sets, convex kernel, points of local nonconvexity
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society