A TOPOLOGICAL VERSION OF SLUTSKY'S THEOREM

PAUL RÉSSEL

ABSTRACT. For weak convergence of probability measures on a product of two topological spaces the convergence of the marginals is certainly necessary. If however the marginals on one of the factor spaces converge to a one-point measure, the condition becomes sufficient, too. This generalizes a well-known result of Slutsky.

One of the most frequently applied theorems in Mathematical Statistics is the so-called "Slutsky's theorem". Roughly stated this theorem says that if a sequence of random variables converges in distribution to a certain limit law, then so does a slightly disturbed sequence. More precisely: let \(X_1, X_2, \ldots \) be a sequence of real valued random variables converging in distribution to \(\mu \). Let \(Y_1, Y_2, \ldots \) be another sequence of random variables defined on the same probability space, but not necessarily independent of the \(X_j \). Then if \(Y_n \) converges in probability to zero, the "disturbed" sequence \(X_n + Y_n \) converges in distribution to \(\mu \). Similarly, if \(Y_n \) converges to one then \(\mu \) is the limit law of \(X_n Y_n \), cf. [3].

More recently, in connection with infinite dimensional random variables (resp. stochastic processes), a generalisation of Slutsky's theorem was obtained for random variables with values in metric spaces [1, Chapter 1]. But not all range spaces of random variables are in a natural way metrizable and we are presenting now a rather general version of Slutsky's theorem which hopefully will cover all situations where a result like this may be needed.

Let \(E \) be an arbitrary topological space (not necessarily Hausdorff). The Borel-\(\sigma \)-field of \(E \) (i.e. the \(\sigma \)-field generated by the topology) is denoted \(\mathcal{B}(E) \). A probability measure \(\mu \) on \(\mathcal{B}(E) \) is called \(\tau \)-smooth if and only if \(\mu(G) = \sup \mu(G) \) for every net of open subsets \(\{G_\alpha\} \) of \(E \) filtering up to \(G \). This condition can be regarded as a kind of minimal compatibility of the measure with the underlying topology. If \(E \) has a countable base then of course every measure is \(\tau \)-smooth. If \(E \) is completely metrizable or locally compact, then \(\tau \)-smoothness is equivalent with being a Radon measure, cf. [4, p. 16].

Let \(M_1^\tau(E) \) denote the space of all \(\tau \)-smooth probability measures on some topological space \(E \). Then the weak topology on \(M_1^\tau(E) \) is by definition the coarsest topology such that for each bounded lower semicontinuous functions \(f: E \to \mathbb{R} \) the associated function \(\mu \mapsto \int f \, d\mu \) on \(M_1^\tau(E) \) is also lower semicontinuous. The famous Portmanteau theorem (cf. [4, Theorem 8.1]) states a lot of equivalent conditions for the weak convergence of nets of probability measures from which we only need, that \(\mu_\alpha \to \mu \) weakly if and only if \(\liminf \mu_\alpha(G) \geq \mu(G) \) for each open set \(G \subseteq E \).

Let \(E \) and \(F \) be two topological spaces, then always \(\mathcal{B}(E) \otimes \mathcal{B}(F) \subseteq \mathcal{B}(E \times F) \). The usual product of two measures \(\mu \) on \(\mathcal{B}(E) \) and \(\nu \) on \(\mathcal{B}(F) \) is only defined on
$B(E) \otimes B(F)$, but if μ and ν are both τ-smooth, then there is a unique τ-smooth extension of $\mu \otimes \nu$ to the larger σ-field $B(E \times F)$, denoted $\mu \otimes \nu$; cf. [2, Theorem 1].

Now we are able to state our result:

THEOREM. Let E and F be two (not necessarily Hausdorff) spaces. Let $\{\rho_\lambda\}$ be a net of τ-smooth probability measures on $E \times F$ with marginals $\{\mu_\lambda\}$ on E and $\{\nu_\lambda\}$ on F. Assume that $\{\mu_\lambda\}$ converges to some τ-smooth measure μ and that $\{\nu_\lambda\}$ converges to a one-point measure ϵ_y, where $y \in F$. Then $\{\rho_\lambda\}$ converges to $\mu \otimes \epsilon_y$.

PROOF. Let $G \subseteq E \times F$ be open, then there are open sets $U_\lambda \subseteq E$, $V_\lambda \subseteq F$, $\lambda \in \Lambda$ such that $G = \bigcup_{\lambda \in \Lambda} (U_\lambda \times V_\lambda)$. The measure $\rho := \mu \otimes \epsilon_y$ being τ-smooth, we can find, given $\epsilon > 0$, finitely many $\lambda_1, \ldots, \lambda_n \in \Lambda$ such that

$$\rho \left(\bigcup_{j=1}^n (U_{\lambda_j} \times V_{\lambda_j}) \right) > \rho(G) - \epsilon.$$

Put $G_0 := \bigcup_{j=1}^n (U_{\lambda_j} \times V_{\lambda_j})$ and $I := \{ j \leq n : y \in V_{\lambda_j} \}$. If $I = \emptyset$, then $\rho(G_0) = 0$ and certainly $\liminf \rho_\lambda(G_0) \geq \rho(G_0)$. Suppose now that $I \neq \emptyset$. Let $A := \bigcup_{j \in I} U_{\lambda_j}$ and $B := \bigcap_{j \in I} V_{\lambda_j}$; then $G_1 := A \times B \subseteq G_0$ and $\rho(G_1) = \rho(G_0)$. Using the fact that

$$\limsup \nu_\lambda(B^c) \leq \epsilon_y(B^c) = 0$$

we get

$$\liminf \rho_\lambda(G_0) \geq \liminf \rho_\lambda(G_1) \geq \liminf (\mu_\lambda(A) - \nu_\lambda(B^c)) \geq \mu(A) = \rho(G_0) > \rho(G) - \epsilon.$$

Hence

$$\liminf \rho_\lambda(G) \geq \rho(G)$$

and the above-mentioned \liminf-condition shows that $\rho = \lim \rho_\lambda$. □

We now show how easily the classical theorem of Slutsky mentioned in the introduction (and a lot of similar results) are obtained from our theorem.

Suppose that X_n, Y_n, $n = 1, 2, \ldots$, are real random variables such that $P X_n$ (the distribution of X_n) converges to μ, Y_n converging in probability (and therefore in distribution, too) to zero. Let $\varphi : \mathbb{R}^2 \rightarrow \mathbb{R}$ be defined by $\varphi(x, y) := x + y$. Then

$$P X_n + Y_n \rightarrow P \varphi(X_n, Y_n) = (P X_n, Y_n) \varphi$$

and from our theorem

$$P(X_n, Y_n) \rightarrow \mu \otimes \epsilon_0.$$

The continuity of φ now implies

$$P X_n + Y_n \rightarrow (\mu \otimes \epsilon_0) \varphi = \mu \epsilon_0 = \mu.$$

If instead Y_n converges to one, we have to replace φ by the continuous function $\psi(x, y) := xy$ to get

$$P X_n Y_n \rightarrow \mu.$$

The extension of Theorem 1 to the product of more than two, but finitely many spaces is more or less obvious. The following lemma shows that the result also extends to countable products.
Lemma. Let E_1, E_2, \ldots be a countable sequence of topological spaces whose product is denoted E. Let $\{\rho^n\}$ be a net of τ-smooth probability measures on E such that $\{\rho^n_i\}$, the net of marginals in the ith coordinate, converges to a one-point measure ϵ_{x_i} for each $i \geq 1$. Then $\{\rho^n\}$ converges to ϵ_x, where $x := (x_1, x_2, \ldots)$.

Proof. Let $\pi^n: E \to \prod_{i=1}^n E_i$ be the natural projection. By induction we conclude from Theorem 1 that $\{\rho^{n,r}_n\}$ converges to $\epsilon(x_1, \ldots, x_n)$ for all $n \in \mathbb{N}$. If $G \subseteq E$ is open, then G has the form

$$G = \bigcup_{n=1}^{\infty} \pi^{-1}_n(G_n)$$

where $G_n \subseteq \prod_{i=1}^n E_i$ is open for all n.

We have to show $\lim\inf \rho_n(G) \geq \epsilon_x(G)$ and this is obvious if $x \notin G$. But if $x \in G$ then $x \in \pi^{-1}_n(G_n)$ for some n and hence

$$\lim\rho_n(G) \geq \lim\inf \rho_n(\pi^{-1}_n(G_n))$$

$$= \lim\inf \rho^{n,r}_n(G_n)$$

$$\geq \epsilon(x_1, \ldots, x_n)(G_n) = 1. \quad \square$$

References

Institut für Mathematische Statistik der Westfälischen Wilhelms-Universität Münster, Roxeler Strasse 64, D-4400 Münster, Federal Republic of Germany