Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On developability


Author: H. H. Hung
Journal: Proc. Amer. Math. Soc. 85 (1982), 275-277
MSC: Primary 54E30; Secondary 54A25, 54E35, 54F65
DOI: https://doi.org/10.1090/S0002-9939-1982-0652457-8
MathSciNet review: 652457
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The converse of an old result of Bing turns out to be a very interesting characterization of developability. It is interesting in the sense that it provides a unifying framework for certain classical results of Bing, F. B. Jones, Heath and Wicke and Worrell, strengthening some of them in the process, without much effort.


References [Enhancements On Off] (What's this?)

  • [1] R. H. Bing, Metrization of topological spaces, Canad. J. Math. 3 (1951), 175-186. MR 0043449 (13:264f)
  • [2] H. Brandenburg, Some characterizations of developable spaces, Proc. Amer. Math. Soc. 80 (1980), 157-161. MR 574527 (81g:54027)
  • [3] D. K. Burke, Preservation of certain base axioms under a perfect mapping, Topology Proc. 1 (1976), 269-279. MR 0448314 (56:6621)
  • [4] -, Pseudo-open mappings from topological sums, Proc. Amer. Math. Soc. 74 (1979), 191-196. MR 521897 (80h:54034)
  • [5] D. K. Burke and D. J. Lutzer, Recent advances in the theory of generalized metric spaces, Topology (Proc. Ninth Annual Spring Topology Conf., Memphis State Univ., Memphis, Tenn., 1975), Lecture Notes in Pure and Appl. Math., Vol. 24, Dekker, New York, 1976, pp. 1-70. MR 0428293 (55:1318)
  • [6] J. W. Green, Completion and semicompletion of Moore spaces, Pacific J. Math. 57 (1975), 153-165. MR 0394584 (52:15385)
  • [7] R. W. Heath, On spaces with point-countable bases, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 393-395. MR 0187202 (32:4656)
  • [8] H. H. Hung, One more metrization theorem, Proc. Amer. Math. Soc. 57 (1976), 351-353. MR 0405366 (53:9160)
  • [9] -, A contribution to the theory of metrization, Canad. J. Math. 29 (1977), 1145-1151. MR 0454929 (56:13172)
  • [10] -, A note on a theorem of Heath, Topology Appl. (to appear). MR 667662 (83k:54033)
  • [11] -, Collectionwise normality and fragmented collectionwise normality--Applications, Abstracts Amer. Math. Soc. 2 (1981), 410.
  • [12] F. B. Jones, Concerning normal and completely normal spaces, Bull. Amer. Math. Soc. 43 (1937), 671-677. MR 1563615
  • [13] A. Okuyama, $ \sigma $-spaces and closed mappings. I and II, Proc. Japan Acad. 44 (1968), 472-481. MR 0229217 (37:4791)
  • [14] F. Siwiec and J. Nagata, A note on nets and metrization, Proc. Japan Acad. 44 (1968), 623-627. MR 0242116 (39:3450)
  • [15] H. H. Wicke, A functional characterization of primitive base, Proc. Amer. Math. Soc. 72 (1978), 355-361. MR 507338 (80h:54037)
  • [16] H. H. Wicke and J. M. Worrell, Jr., A characterization of spaces having bases of countable order in terms of primitive bases, Canad. J. Math. 27 (1975), 1100-1109. MR 0385817 (52:6676)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54E30, 54A25, 54E35, 54F65

Retrieve articles in all journals with MSC: 54E30, 54A25, 54E35, 54F65


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1982-0652457-8
Keywords: Characterization of developability, $ \sigma $-discrete closed covers, neighbourhoods of $ \sigma $-discrete closed sets, $ \sigma $-discrete networks, point-countable bases, countable discrete families of closed sets, chrysanthemums, Moore chrysanthemums, primitive bases, symmetric neighbourhood systems, neighbourhoods of $ \sigma $-conservative closed sets
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society