ON A THEOREM OF FLANDERS

ROBERT E. HARTWIG

ABSTRACT. It is shown that if \(R \) is a regular strongly-pi-regular ring, then \(R \) is unit-regular precisely when \((ab)^d \cong (ba)^d \) for all \(a, b \in R \). This generalizes a result by Flanders, which states that the matrices \(AB \) and \(BA \) over a field \(F \) have the same elementary divisors except possibly those divisible by \(\lambda \).

1. Introduction. A classic theorem of Flanders [3] states that if \(A \) and \(B \) are \(n \times n \) matrices over a field \(F \), then \(AB \) and \(BA \) have the same elementary divisors, except possibly for those that are powers of \(\lambda \).

The purpose of this note is to point out that the real reason why this result is true, is because the matrix ring \(F_{n \times n} \) is both strongly-pi-regular as well as unit-regular. We shall use the concept of pseudo-similarity, introduced in [5] to provide the necessary link between strong-pi-regularity and unit-regularity.

We recall that a ring \(R \) is called (unit) regular, if for every \(a \in R \), there exists a (unit) solution \(x \in R \), to the equation \(axa = a \). Such solutions will be denoted at \(a^{-} \). A ring \(R \) is strongly-pi-regular, \(sp \), for short, if for every \(a \in R \), there is a solution to the equations

\[
 a^k x a = a^k, \quad x a x = x, \quad a x = x a
\]

for some \(k \geq 0 \). The solution is unique and is called the Drazin inverse \(a^d \) of \(a \) [2].

In the special cases where \(k = 0 \) or \(k = 1 \), \(a^d \) is called the group inverse of \(a \), and is denoted by \(a^\# \). It is well known that the ring \(F_{n \times n} \) of \(n \times n \) matrices over a field \(F \) is both \(sp \) and unit-regular. Two ring elements are called pseudo-similar if

\[
 x^{-} a x = b, \quad x b x^{-} = a, \quad x x^{-} x = x
\]

for some \(x, x^{-} \in R \). It was shown in [6], that for a unit-regular ring, similarity \((\simeq)\) and pseudo-similarity \((\sim)\), coincide. Two idempotents \(e \) and \(f \) in \(R \), are said to be equivalent, \(e \sim f \), if \(e R \) and \(f R \) are isomorphic \((\cong)\) as \(R \)-modules. This may be rewritten as \(e \sim f \) if \(e = p^+ p, f = pp^+ \), for some \(p, p^+ \in R \), that satisfy \(pp^+ p = p \) and \(p^+ pp^+ = p^+ \). It is easily seen that \(e \sim f \iff e \approx f \) [4] and that \(\sim \) actually coincides with the classical \(D \)-relation on semigroups.

2. Main results. Our generalization of the theorem of Flanders is based on the following two main results.

THEOREM 1. Let \(R \) be a strongly-pi-regular ring with unity and let \(x, y \in R \). Then the following are equivalent:

(i) \(x^d \sim y^d \),

(ii) \(x^2 x^d \sim y^2 y^d \).

In which case

Received by the editors July 10, 1980 and, in revised form, December 9, 1981.

1980 Mathematics Subject Classification. Primary 15A21, 15A09.
(iii) \(xx^d \approx yy^d\) and \((x^d + 1 - xx^d) \approx (y^d + 1 - yy^d)\).

If in addition \(R = \mathbb{F}_{n \times n}\), then each of the above is equivalent to

(iv) \(x\) and \(y\) have the same elementary divisors, except possibly those that are powers of \(\lambda\).

Proof. (i)\(\Rightarrow\) (ii) This is based on a result of Drazin [2], which states that if \(pq = qp\), and \(p^\#\) exists, then \(p^\#q = qp^\#\). Now if \(x^d q = q y^d\), with \(q\) invertible, then because \((x^d)^\# = x^2 x^d\), it follows that \(x^2 x^d q = q y^2 y^d\). The converse follows also since \((p^\#)^\# = p\).

(i)\(\Rightarrow\) (iii) Let \(x^d q = q y^d\), and hence by part (ii) \(x^2 x^d q = q y^2 y^d\). Now \(xx^d = (x^2 x^d)x^d\) and so \(xx^d q = q y y^d\). The remaining result is now also clear.

(iii)\(\Rightarrow\) (iv) Let \(R = \mathbb{F}_{n \times n}\), and suppose that

\[
\begin{align*}
(x^d) & = P \begin{bmatrix} U_1 & 0 \\ 0 & \eta_1 \end{bmatrix} P^{-1}, \\
(y^d) & = Q \begin{bmatrix} U_2 & 0 \\ 0 & \eta_2 \end{bmatrix} Q^{-1},
\end{align*}
\]

are the core-nilpotent decompositions of \(x\) and \(y\) respectively, with \(U_i\) invertible and \(\eta_i\) nilpotent, \(i = 1, 2\). Then

\[
xx^d \approx yy^d
\]

shows that \(U_1\) and \(U_2\) have the same size. Next,

\[
\begin{bmatrix} U_1^{-1} & 0 \\ 0 & I \end{bmatrix} \approx x^d + 1 - xx^d \approx y^d + 1 - yy^d \approx \begin{bmatrix} U_2^{-1} & 0 \\ 0 & I \end{bmatrix}.
\]

Hence, on using elementary divisors, it follows that \(U_1^{-1} \approx U_2^{-1}\) and so \(U_1 \approx U_2\). This is equivalent to (iv).

(iv)\(\Rightarrow\) (i) This is clear from the fact that \(x^d \approx y^d \Leftrightarrow U_1^{-1} \approx U_2^{-1} \Leftrightarrow U_1 \approx U_2\).

Our second result deals with the relation between \(ab\) and \(ba\).

Theorem 2. Let \(R\) be a strongly-\(p\)-regular ring with unity, and let \(a, b \in R\). Then the following are equivalent:

(i) \(R\) is unit-regular, and

(ii) \(R\) is regular and \((ab)^d \approx (ba)^d\) for all \(a, b \in R\).

Proof. (i)\(\Rightarrow\) (ii) Cline's formula [1], states that \((xy)^d = x(yx)^d\). If we apply this to \(ab\) and \(ba\) we may write

\[
(ab)^d = a \cdot (ba)^d \cdot (ba)^d b
\]

and

\[
(ba)^d = (ba)^d b \cdot (ab)^d \cdot a.
\]

Now since \((ba)^d b \cdot a \cdot (ba)^d b = (ba)^d\), it follows that \((ab)^d = (ba)^d\). Moreover, \(ab(ab)^d = ba(ba)^d\) as well. Next, since \(R\) is assumed to be unit-regular, we may conclude [6, p. 453] that semisimilarity implies similarity. Consequently \((ab)^d \approx (ba)^d\) and \(ab(ab)^d \approx ba(ba)^d\).

(ii)\(\Rightarrow\) (i) Based on a result of Vidav [7], it suffices to show that two equivalent idempotents are similar. Suppose therefore that \(e\) and \(f\) are equivalent idempotents in \(R\), and that \(e = p^+ pf = pp^+\), with \(pp^+ p = p\) and \(p^+ pp^+ = p^+\). Now since \(e^d = e\) and \(f^d = f\), we have \(e = e^d = (p^+ p)^d \approx (pp^+)^d = f^d = f\). Because \(R\) is regular, the proof is now complete.
Corollary 1. If $A, B \in F_{n \times n}$, then
(i) $(AB)^d \approx (BA)^d$,
(ii) $(AB)^2(AB)^d \approx (BA)^2(BA)^d$, and
(iii) the elementary divisors of AB and BA coincide except possibly for those that are powers of λ.

Proof. (i) Since $F_{n \times n}$ is unit-regular and sttr, this follows from Theorem 2.
The remaining two results follow at once from Theorem 1, thereby completing the proof of Flander's Theorem.

Corollary 2. If $A, B \in F_{n \times n}$, then $AB \cong BA$ if and only if $\text{rank}(AB)^k = \text{rank}(BA)^k$, $k = 1, 2, \ldots$.

Proof. The necessity is clear. For the sufficiency, suppose that $AB = x$ and $BA = y$ are given as in (2.1). It then suffices to show that $U_1 \approx U_2$ and $\eta_1 \approx \eta_2$.
From Corollary 1, we recall that $U_1 \approx U_2$ always holds. Lastly, $\text{rank}(AB)^k = \text{rank}(BA)^k$ implies that $\text{rank}(\eta_1^k) = \text{rank}(\eta_2^k)$, for all $k = 1, 2, \ldots$, which is well known to suffice for $\eta_1 \approx \eta_2$.

Remarks. 1. The results of Corollary 1 can easily be modified to include the case where A and B are rectangular, by means of adding zeros suitably.

2. The equivalence of the pseudo-similarity and similarity of $(ab)^d$ and $(ba)^d$, hinges on the existence of a unit solution to the equation $(ba)^d b \cdot x \cdot (ba)^d b = (ba)^d b$.
Even though several obvious solutions exist, such as $x = a$ or $x = a + 1 - (ba)(ba)^d$, it is not known whether there exists a unit solution u that can be expressed in terms of a, b and $(\cdot)^d$ exclusively.

3. It is not known whether the converse of Theorem 1 holds in general. That is whether $xx^d \approx yy^d$ and $x^d + 1 - xx^d \approx y^d + 1 - yy^d$ ensure that $x^d \approx y^d$.

References

Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27650