Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On simple reducible depth-two Lie algebras with classical reductive null component


Author: Thomas B. Gregory
Journal: Proc. Amer. Math. Soc. 85 (1982), 318-322
MSC: Primary 17B20; Secondary 17B50
DOI: https://doi.org/10.1090/S0002-9939-1982-0656092-7
MathSciNet review: 656092
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We classify the simple finite-dimensional reducible graded Lie algebras of the form $ {L_{ - 2}} \oplus {L_{ - 1}} \oplus {L_0} \oplus {L_1} \oplus \cdots \oplus {L_k}$ over an algebraically closed field of characteristic greater than 3, where $ {L_0}$ is reductive and classical such that no nonzero element of the center of $ {L_0}$ annihilates $ {L_{ - 2}}$ and where $ {L_{ - 1}}$ is the sum of two proper $ {L_0}$-submodules.


References [Enhancements On Off] (What's this?)

  • [1] T. B. Gregory, A characterization of the contact Lie algebras, Proc. Amer. Math. Soc. 82 (1981), 505-511. MR 614868 (83e:17012)
  • [2] -, On simple reducible Lie algebras of depth two, Proc. Amer. Math. Soc. 83 (1981), 31-35. MR 619975 (82m:17002)
  • [3] -, Simple Lie algebras with classical reductive null component, J. Algebra 63 (1980), 484-493. MR 570725 (81h:17015)
  • [4] V. G. Kac, The classification of the simple Lie algebras over a field with non-zero characteristic, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 385-408; English transl., Math. USSR Izv. 4 (1970), 391-413. MR 0276286 (43:2033)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 17B20, 17B50

Retrieve articles in all journals with MSC: 17B20, 17B50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1982-0656092-7
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society