Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A simple derivation of Jacobi's four-square formula


Author: John A. Ewell
Journal: Proc. Amer. Math. Soc. 85 (1982), 323-326
MSC: Primary 10J05; Secondary 10A45
DOI: https://doi.org/10.1090/S0002-9939-1982-0656093-9
MathSciNet review: 656093
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For each nonnegative integer $ n$, $ {r_4}(n)$ counts number of solutions $ ({x_1},{x_2},{x_3},{x_4}) \in {{\mathbf{Z}}^4}{\text{of }}n = x_1^2 + x_2^2 + x_3^2 + x_4^2$. Within the confines of elementary partition theory the author presents a simple derivation of Jacobi's formula for $ {r_4}(n)$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 10J05, 10A45

Retrieve articles in all journals with MSC: 10J05, 10A45


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1982-0656093-9
Keywords: Four-square theorem, Jacobi's formula for $ {r_4}(n)$
Article copyright: © Copyright 1982 American Mathematical Society