Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The use of shears to construct paradoxes in $ {\bf R}\sp{2}$


Author: Stanley Wagon
Journal: Proc. Amer. Math. Soc. 85 (1982), 353-359
MSC: Primary 28C10; Secondary 51M99
DOI: https://doi.org/10.1090/S0002-9939-1982-0656101-5
MathSciNet review: 656101
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that the addition of a certain shear transformation to the planar isometry group is sufficient to allow a Banach-Tarski type paradox to be constructed in $ {{\mathbf{R}}^2}$. This paradox is then combined with a result of Rosenblatt to obtain a characterization of two-dimensional Lebesgue measure as a finitely additive measure.


References [Enhancements On Off] (What's this?)

  • [1] S. Banach, Sur le problème de la mésure, Fund. Math. 4 (1923), 7-33.
  • [2] -, Un théorème sur les transformations biunivoques, Fund. Math. 6 (1924), 236-239.
  • [3] S. Banach and A. Tarski, Sur la décomposition des ensembles de points en parties respectivement congruentes, Fund. Math. 6 (1924), 244-277.
  • [4] J. L. Brenner, Quelques groupes libre de matrices, C. R. Acad. Sci. Paris 241 (1955), 1689-1691. MR 0075952 (17:824f)
  • [5] K. Goldberg and M. Newman, Pairs of matrices of order two which generate free groups, Illinois J. Math. 1 (1957), 446-448. MR 0089207 (19:633f)
  • [6] F. P. Greenleaf, Invariant means on topological groups, Van Nostrand, New York, 1969. MR 0251549 (40:4776)
  • [7] F. Hausdorff, Bemerkung über den Inhalt von Punktmengen, Math. Ann. 75 (1914), 428-433. MR 1511802
  • [8] F. Klein and R. Fricke, Theorie der elliptischen Modulfunktionen, vol. 1, Teubner, Leipzig, 1890.
  • [9] A. G. Kurosh, The theory of groups, vol. II, Chelsea, New York, 1956. MR 0080089 (18:188f)
  • [10] H. Lebesgue, Leçons sur l'intégration, Gauthier-Villars, Paris, 1904 (2nd ed., 1928; reprinted Chelsea, New York, 1973).
  • [11] G. A. Margulis, Some remarks on invariant means, Monatsh. Math. 90 (1980), 233-235. MR 596890 (82b:28034)
  • [12] -, Finitely additive invariant measures on Euclidean spaces, Preprint, 1981.
  • [13] J. Mycielski, Finitely additive measures. I, Colloq. Math. 42 (1979), 309-318. MR 567569 (82g:43003a)
  • [14] J. von Neumann, Zur allgemeinen Theorie des Masses, Fund. Math. 13 (1929), 73-116.
  • [15] J. Rosenblatt, Uniqueness of invariant means for measure-preserving transformations, Trans. Amer. Math. Soc. 265 (1981), 623-636. MR 610970 (83a:28026)
  • [16] I. N. Sanov, A property of a representation of a free group, Dokl. Akad. Nauk SSSR 57 (1947), 657-659. (Russian) MR 0022557 (9:224e)
  • [17] W. Sierpiński, Sur l'équivalence des ensembles par décomposition en deux parties, Fund. Math. 35 (1948), 151-158. MR 0028377 (10:437e)
  • [18] K. Stromberg, The Banach-Tarski paradox, Amer. Math. Monthly 86 (1979), 151-161. MR 522339 (80i:04006)
  • [19] D. Sullivan, For $ n > 3$ there is only one finitely additive rotationally invariant measure on the $ n$-sphere defined on all Lebesgue measurable subsets, Bull. Amer. Math. Soc. (N.S.) 4 (1981), 121-123. MR 590825 (82b:28035)
  • [20] A. Tarski, Problème 38, Fund. Math. 7 (1925), 381.
  • [21] S. Wagon, Circle-squaring in the twentieth century, Math. Intelligencer 3 (1981), 176-181. MR 642135 (83a:51002)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28C10, 51M99

Retrieve articles in all journals with MSC: 28C10, 51M99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1982-0656101-5
Keywords: Paradoxes, finitely additive measures
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society