Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On Dunford-Pettis operators that are Pettis-representable


Author: Elias Saab
Journal: Proc. Amer. Math. Soc. 85 (1982), 363-365
MSC: Primary 47B99; Secondary 46B20, 46G99
DOI: https://doi.org/10.1090/S0002-9939-1982-0656103-9
MathSciNet review: 656103
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ E$ be a Banach space. It is shown that if every Dunford-Pettis operator $ T:{L^1}[0,1] \to {E^ * }$ is Pettis-representable, then every operator $ T:{L^1}[0,1] \to {E^ * }$ is Pettis-representable.


References [Enhancements On Off] (What's this?)

  • [1] J. Bourgain, On martingales in conjugate Banach spaces (unpublished).
  • [2] -, Dunford-Pettis operators on $ {L^1}$ and the Radon-Nikodym property, Israel J. Math. 37 (1980), 34-47. MR 599300 (82k:47047a)
  • [3] J. Diestel and J. J. Uhl, Jr., Vector measures, Math. Surveys, no. 15, Amer. Math. Soc., Providence, R. I., 1977. MR 0453964 (56:12216)
  • [4] D. G. Fremlin and M. Talagrand, A decomposition theorem for additive set-functions, with applications to Pettis integrals and ergodic means, Math. Z. 168 (1979), 117-242. MR 544700 (80k:28004)
  • [5] N. Ghoussoub and E. Saab, On the weak Radon-Nikodym property, Proc. Amer. Math. Soc. 81 (1981), 81-84. MR 589141 (81j:46068)
  • [6] A. Grothendieck, Une caractérisation vectorielle métrique des espaces $ {L^1}$, Canad. J. Math. 7 (1953), 552-561. MR 0076301 (17:877d)
  • [7] L. Janicka, Wlasnosci typu Radona-Nikodyma dla przestrzeni Banacha, Thesis, Wrocław, Poland, 1978.
  • [8] K. Musial, The weak Radon-Nikodym property in Banach spaces, Studia Math. 64 (1978), 151-- 174. MR 537118 (80h:46065)
  • [9] L. H. Riddle and J. J. Uhl, Jr., Martingales and the fine line between Asplund spaces and spaces not containing a copy of $ {l_1}$ (preprint). MR 668544 (84a:46037)
  • [10] E. Saab, On Dunford-Pettis operators, Canad. Math. Bull. (to appear). MR 663615 (84e:46016)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B99, 46B20, 46G99

Retrieve articles in all journals with MSC: 47B99, 46B20, 46G99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1982-0656103-9
Keywords: Dunford-Pettis operators, Pettis-representable operators
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society