Dynamical systems satisfying certain stability and recursive criteria

Author:
Ronald A. Knight

Journal:
Proc. Amer. Math. Soc. **85** (1982), 373-380

MSC:
Primary 54H20; Secondary 58F25

MathSciNet review:
656106

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A necessary and sufficient condition for the various characteristic zero concepts to coincide is given. We prove that on locally compact spaces a flow of characteristic 0 and the center of a flow of characteristic are almost of characteristic . Poisson stable flows and nonwandering flows of the zero characteristics are characterized in terms of the prolongation, prolongational limit, orbit closure, limit, and weak attraction relations. Examples showing the results are sharp are given.

**[1]**Shair Ahmad,*Strong attraction and classification of certain continuous flows*, Math. Systems Theory**5**(1971), 157–163. MR**0305377****[2]**Shair Ahmad,*Dynamical systems of characteristic 0⁺*, Pacific J. Math.**32**(1970), 561–574. MR**0258007****[3]**Shair Ahmad and José Sarabia,*On nonwandering continuous flows*, Funkcial. Ekvac.**21**(1978), no. 3, 193–201. MR**540390****[4]**N. Bhatia and O. Hajek,*Theory of dynamical systems*, Parts I and II, Tech. Notes BN-599 and BN-606, Univ. of Maryland, 1969.**[5]**Ronald A. Knight,*Dynamical systems of characteristic 0*, Pacific J. Math.**41**(1972), 447–457. MR**0314026****[6]**Ronald A. Knight,*Structure and characterizations of certain continuous flows*, Funkcial. Ekvac.**17**(1974), 223–230. MR**0380759****[7]**Ronald A. Knight,*Recurrent and Poisson stable flows*, Proc. Amer. Math. Soc.**83**(1981), no. 1, 49–53. MR**619979**, 10.1090/S0002-9939-1981-0619979-6**[8]**Ronald A. Knight,*Dynamically symmetric flows*, J. Math. Phys. Sci.**15**(1981), no. 1, 79–98. MR**635061****[9]**Ronald A. Knight,*Compact dynamical systems*, Proc. Amer. Math. Soc.**72**(1978), no. 3, 501–504. MR**509242**, 10.1090/S0002-9939-1978-0509242-6**[10]**Ronald A. Knight,*Central motions*, Ann. Polon. Math.**44**(1984), no. 2, 197–200. MR**756505****[11]**V. V. Nemytskii and V. V. Stepanov,*Qualitative theory of differential equations*, Princeton Mathematical Series, No. 22, Princeton University Press, Princeton, N.J., 1960. MR**0121520**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54H20,
58F25

Retrieve articles in all journals with MSC: 54H20, 58F25

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1982-0656106-4

Keywords:
Center,
divergent,
dispersive,
dynamical system,
flow,
minimal,
nonwandering,
Poisson stable,
recurrent,
stability,
weak attraction,
zero characteristic

Article copyright:
© Copyright 1982
American Mathematical Society