On fixed point theorems of contractive type

Authors:
Mau Hsiang Shih and Cheh Chih Yeh

Journal:
Proc. Amer. Math. Soc. **85** (1982), 465-468

MSC:
Primary 54H25

DOI:
https://doi.org/10.1090/S0002-9939-1982-0656125-8

MathSciNet review:
656125

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a continuous map of a nonempty compact metric space into itself, such that for some positive integer , the iterated map satisfying

**[1]**Ming-Po Chen and Mau-Hsiang Shih,*Fixed point theorems for point-to-point and point-to-set maps*, J. Math. Anal. Appl.**71**(1979), 516-524. MR**548780 (80i:54053)****[2]**S. C. Chu and J. B. Diaz,*Remarks on a generalization of Banach's principle of contractive mappings*, J. Math. Anal. Appl.**11**(1965), 440-446. MR**0184218 (32:1691)****[3]**Lj. B. Ćirić,*A generalization of Banach's contraction principle*, Proc. Amer. Math. Soc.**45**(1974), 267-273.**[4]**M. Edelstein,*On fixed points and periodic points under contractive mappings*, J. London Math. Soc.**37**(1962), 74-79. MR**0133102 (24:A2936)****[5]**G. Hardy and T. Rogers,*A generalization of a fixed point theorem of Reich*, Canad. Math. Bull.**16**(1973), 201-206. MR**0324495 (48:2847)****[6]**L. Janos,*A converse of Banach's contraction theorem*, Proc. Amer. Math. Soc.**16**(1967), 287-289. MR**0208589 (34:8398)****[7]**A. N. Kolmogorov and S. V. Fomin,*Elements of the theory of functions and functional analysis*, Metric and Normed Spaces, Vol. 1, transl, by L. Baron, Graylock Press, Rochester, N.Y., 1957. MR**0085462 (19:44d)****[8]**P. R. Meyer,*A converse to Banach's contraction theorem*, J. Res. Nat. Bur. Standards**71B**(1967), 73-76. MR**0221469 (36:4521)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54H25

Retrieve articles in all journals with MSC: 54H25

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1982-0656125-8

Keywords:
Contraction,
fixed point,
remetrization

Article copyright:
© Copyright 1982
American Mathematical Society