Hadamard matrices and -codes of length

Author:
C. H. Yang

Journal:
Proc. Amer. Math. Soc. **85** (1982), 480-482

MSC:
Primary 05B20; Secondary 62K10, 94A29

MathSciNet review:
656128

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is found that four-symbol -codes of length can be composed for odd or , where all , and . Consequently new families of Hadamard matrices of orders and can be constructed, where is the order of Williamson matrices.

**[1]**R. J. Turyn,*Hadamard matrices, Baumert-Hall units, four-symbol sequences, pulse compression, and surface wave encodings*, J. Combinatorial Theory Ser. A**16**(1974), 313–333. MR**0345847****[2]**-,*Computation of certain Hadamard matrices*, Notices Amer. Math. Soc.**20**(1973), A-l.**[3]**-, Personal communication (1980).**[4]**J. S. Wallis,*On Hadamard matrices*, J. Combin. Theory**18A**(1975), 149-164.**[5]**Anthony V. Geramita and Jennifer Seberry,*Orthogonal designs*, Lecture Notes in Pure and Applied Mathematics, vol. 45, Marcel Dekker, Inc., New York, 1979. Quadratic forms and Hadamard matrices. MR**534614****[6]**A. C. Mukhopadhyay,*Some infinite classes of Hadamard matrices*, J. Combin. Theory Ser. A**25**(1978), no. 2, 128–141. MR**509438**, 10.1016/0097-3165(78)90075-4**[7]**C. H. Yang,*Hadamard matrices, finite sequences, and polynomials defined on the unit circle*, Math. Comp.**33**(1979), no. 146, 688–693. MR**525685**, 10.1090/S0025-5718-1979-0525685-8

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
05B20,
62K10,
94A29

Retrieve articles in all journals with MSC: 05B20, 62K10, 94A29

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1982-0656128-3

Article copyright:
© Copyright 1982
American Mathematical Society