Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


A note on preprojective partitions over hereditary Artin algebras

Author: Gordana Todorov
Journal: Proc. Amer. Math. Soc. 85 (1982), 523-528
MSC: Primary 16A35
MathSciNet review: 660596
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If $ \Lambda $ is an artin algebra there is a partition of $ \operatorname{ind} \Lambda $, the category of indecomposable finitely generated $ \Lambda $-modules, $ \operatorname{ind} \Lambda = { \cup _{i \geqslant 0}}{\underline{\underline{P}}_i}$, called the preprojective partition. We show that $ \underline{\underline{P}}_i$ can be easily constructed for hereditary artin algebras, if $ \underline{\underline{P}}_{i - 1}$ is known: $ A$ is in $ \underline{\underline{P}}_i$ if and only if $ A$ is not in $ \underline{\underline{P}}_{i - 1}$ and there is an irreducible map $ B \to A$, where $ B$ is in $ \underline{\underline{P}}_{i - 1}$.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A35

Retrieve articles in all journals with MSC: 16A35

Additional Information

PII: S 0002-9939(1982)0660596-0
Article copyright: © Copyright 1982 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia