ON THE UNIFORM ASYMPTOTIC STABILITY IN FUNCTIOTAL DIFFERENTIAL EQUATIONS

L. Z. WEN

ABSTRACT. We consider a system of functional differential equations $x'(t) = F(t, x(t))$ and obtain conditions on a Liapunov functional to insure the uniform asymptotic stability of the zero solution.

1. Introduction. Following the work of Yoshizawa [2], Burton [1] obtained sufficient conditions of the uniform asymptotic stability in the retarded functional differential equation $x'(t) = F(t, x(t))$ on a Liapunov functional. He showed that it is not necessary to require $F(t, x(t))$ bounded for $x(t)$ bounded. Now we use the Razumikhin condition so that it is not necessary to require $V'(t, x(t)) = -W(|x(t)|)$ for all $t \geq 0$. This work generalized Burton’s result.

For $x \in \mathbb{R}^n$, let $|x|$ be $\max_{1 \leq i \leq n} |x_i|$. Given $h > 0$, let C denote the space of continuous functions from $[-h, 0]$ into \mathbb{R}^n and for $\phi \in C$, $\|\phi\| = \sup_{-h \leq \theta \leq 0} |\phi(\theta)|$. For $\phi \in C_H = \{\phi: \phi \in C, \|\phi\| \leq H\}$, let

$$\|\phi\| = \left(\sum_{i=1}^n \int_{-h}^0 \phi_i^2(s) \, ds \right)^{1/2},$$

where ϕ_i are the components of ϕ.

For $t_0 \in \mathbb{R}$, $A > 0$, $t \in [t_0, t_0 + A]$ and a continuous function x from $[t_0 - h, t_0 + A]$ into \mathbb{R}^n, let $x_\theta \in C$ be defined by $x_\theta(0) = x(t + \theta)$, $\theta \in [-h, 0]$.

2. Uniform asymptotic stability.

LEMMA. Let F be a family of continuous functions $f: [a, b] \to [0, 1]$ and $W: [0, \infty) \to [0, \infty)$ be a continuous nondecreasing function, and $W(s) > 0$ if $s > 0$. If there exists $\alpha > 0$ with $\int_a^b f(t) \, dt \geq \alpha$ for any $f \in F$ then there exists $\beta > 0$ with $\int_0^1 W(f(t)) \, dt \geq \beta$.

PROOF. For any $f \in F$, let $E = \{t: f(t) \geq \alpha/2(b - a), a \leq t \leq b\}$ and $m(E)$ be the measure of E. If $m(E) < \alpha/2$, then

$$\alpha \leq \int_a^b f(t) \, dt = \int_E f(t) \, dt + \int_{[a, b] \setminus E} f(t) \, dt < \alpha/2 + \alpha/2 = \alpha,$$

Received by the editors December 9, 1980 and, in revised form, April 25, 1981.

1980 Mathematics Subject Classification. Primary 34K20.

Key words and phrases. Functional differential equations, Liapunov functionals, uniform asymptotic stability.

©1982 American Mathematical Society

0002-9939/82/0000-1051/02.25
a contradiction. Hence \(m(E) > \alpha/2 \) and
\[
\int_a^b W(f(t)) \, dt \geq \int_E W(f(t)) \, dt \geq \int_E W(\alpha/2(b - a)) \, dt \geq W(\alpha/2(b - a))\frac{\alpha}{2} \overset{\text{def}}{=} \beta.
\]

This completes the proof.

We consider the retarded functional differential equation
\[
(1) \quad x'(t) = F(t, x_t),
\]
where \(x'(t) \) is the right-hand derivative of \(x(t) \) and \(F(t, x_t) \) a continuous function from \(R \times C_H \) into \(R^n \), \(F(t, 0) = 0 \). For continuation of solution, we suppose that \(F \) takes closed bounded sets of \(R \times C_H \) into closed bounded sets of \(R^n \).

Denote by \(x(t_0, \phi) \) a solution of (1) with initial condition \(\phi \in C_H \) where \(x(t_0, \phi) = \phi \) and we denote by \(x(t) = x(t, t_0, \phi) \) the value of \(x(t_0, \phi) \) at \(t \).

Let \(V(t, \phi) \) be a continuous nonnegative functional defined in \([0, \infty) \times C_H \). The upper right-hand derivative of \(V \) along solution of (1) is defined to be
\[
V'(t, x_t(t_0, \phi)) = \lim_{\delta \to 0^+} \frac{V(t + \delta, x_{t+\delta}(t_0, \phi)) - V(t, x_t(t_0, \phi))}{\delta}.
\]

We suppose that \(V'(t, x_t) \) exists.

Let \(W_1, W_2, W_3, W \) be continuous nondecreasing functions and \(P \) be a continuous function from \([0, \infty) \) into \([0, \infty) \) with \(W_1(r) > 0, W_2(r) > 0, P(r) > r \) if \(r > 0 \) and \(W(0) = 0 \).

Theorem. Suppose there are functions \(W_1, W_2, W_3, W_\) as above, which also satisfy the following conditions:

(i) \(W_1(|\phi(0)|) \leq V(t, |\phi|) \leq W_2(|\phi(0)|) + W_3(|\phi|) \) for any \(\phi \in C_H \).

(ii) For any \(t_0 \geq 0 \) and any \(\phi \in C_H \)
\[
V'(t, x_t(t_0, \phi)) < 0 \quad \text{if} \quad V(t, x_t(t_0, \phi)) \leq W_2(|\phi|) + W_3(|\phi|) \quad (t \leq t_0 + h),
\]
and
\[
V'(t, x_t(t_0, \phi)) \leq -W(|x(t, t_0, \phi)|) \quad \text{if} \quad P(V(t, x_t(t_0, \phi))) > V(\xi, x_{\xi}(t_0, \phi))
\]
\[
(t \geq t_0 + h; t - h < \xi < t).
\]

Then the zero solution of (1) is uniformly asymptotically stable.

Proof. We first prove the uniform stability. Given \(\epsilon > 0 \ (\epsilon < H, W_1(\epsilon) < H) \), choose \(\delta > 0 \) such that \(\delta < \epsilon, W_2(\delta) < W_1(\epsilon)/2, \) and \(W_3(\delta/\sqrt{\epsilon}) < W_1(\epsilon)/2 \). Let \(t_0 \geq 0 \) and \(||\phi|| < \delta \). We shall show that
\[
(2) \quad V(t, x_t(t_0, \phi)) < W_1(\epsilon) \quad (t \geq t_0).
\]

Obviously,
\[
V(t_0, \phi) \leq W_2(|\phi(0)|) + W_3(||\phi||) \leq W_2(\delta) + W_3(\delta/\sqrt{\epsilon}) < W_1(\epsilon).
\]

For each \(t \in [t_0, t_0 + h] \), if \(V(t, x_t) < W_2(||\phi||) + W_3(||\phi||) \), then \(V(t, x_t) < W_1(\epsilon) \), if \(V(t, x_t) = W_2(||\phi||) + W_3(||\phi||) \), from condition (ii) we get \(V(t + \Delta t, x_{t+\Delta t}) \leq W_2(||\phi||) + W_3(||\phi||) \) for all sufficiently small \(\Delta t > 0 \). It implies that \(V(t, x_t) < W_1(\epsilon) \)
STABILITY IN FUNCTIONAL DIFFERENTIAL EQUATIONS

for all $t \in [t_0, t_0 + h)$. Thus, if (2) fails, then there exists $t_1 > t_0 + h$ such that

$$V(t_1, x_{t_1}) = W_1(\epsilon) \quad V(t, x_t) \leq W_1(\epsilon) \quad (t \leq t_1).$$

Let $d = \inf_{W_2(\|\phi\|) + W_3(\|\phi\|) \leq W_1(\epsilon)} [P(r) - r]$. Obviously, there exists $T \in (t_0 + h, t_1)$ such that

(a) $W_2(\|\phi\|) + W_3(\|\phi\|) \leq W_1(\epsilon) - \frac{1}{\epsilon}d < V(T, x_T) < W_1(\epsilon)$, where $\epsilon > 1$,

(b) $V'(T, x_T) > 0$.

From (a),

$$P(V(T, x_T)) = V(T, x_T) + d > W_1(\epsilon) + \left(1 - \frac{1}{\epsilon}\right)d > V(\xi, x_\xi) \quad (t_0 < \xi < T).$$

From condition (ii), we have $V'(T, x_T) \leq -W(\|x(T)\|) \leq 0$, which contradicts (b). Hence, (2) holds.

By (2) and condition (i), we get $|x(t)| < \epsilon$ for $t \geq t_0$. Since δ is independent of t_0, this proves the uniform stability.

Next, we prove the uniform asymptotic stability. For $H^* = \min[H, 1]$ choose $d > 0$ such that $|x(t, t_0, \phi)| < H^*$ for $t \geq t_0$, if $t_0 > 0$ and $\|\phi\| < \delta$. From condition (i), we have

$$V(t, x_t) < W_1(\epsilon) + (N - 1)d.$$ (3)

If not, then

$$V(t, x_t) \geq W_1(\epsilon) + (N - 1)d \quad (t \geq t_0 + h),$$

and

$$P(V(t, x_t)) = V(t, x_t) + d \geq W_1(\epsilon) + N\bar{d} \geq B > V(\xi, x_\xi) \quad (t_0 \leq \xi \leq t).$$

From (ii) we have $V'(t, x_t) \leq -W(\|x(t)\|) (t \geq t_0 + h)$; it follows that

$$V(t, x_t) < B - \int_{t_0 + h}^t W(\|x(s)\|) ds.$$ (4)

If $V(t, x_t) \geq W_1(\epsilon)$, then

$$W_2(\|x(t)\|) + W_3(\|x(t)\|) > V(t, x_t) > W_1(\epsilon).$$

Therefore, either $W_2(\|x(t)\|) \geq W_1(\epsilon)/2$ or $W_3(\|x(t)\|) \geq W_1(\epsilon)/2$. Let $E_1 = \{t: W_2(\|x(t)\|) \geq W_1(\epsilon)/2, t \geq t_0\}$ and $E_2 = [t_0, \infty) - E_1$. If $t \in E_1$, then there exists a constant $a > 0$ with $\|x(t)\| > a$. If $t \in E_2$, then there exists a constant $b > 0$ with $|x(t)| > b$. In case $t \in E_1$, we have

$$\sum_{i=1}^n \int_{-h}^0 x_i^2(t + \theta) \, d\theta \geq a^2,$$
then
\[\int_{t-h}^{t} \frac{1}{n} \sum_{i=1}^{n} x_i^2(s) \, ds \geq \frac{a^2}{n} = \alpha. \]

Since \(|x(t)| < 1\), we have
\[|x(t)| = \max_i |x_i(t)| \geq \frac{1}{n} \sum_{i=1}^{n} x_i^2(t). \]

Then from the Lemma, there exists \(\beta > 0 \) such that
\[\int_{t-h}^{t} W(|x(s)|) \, ds > \int_{t-h}^{t} W \left(\frac{1}{n} \sum_{i=1}^{n} x_i^2(s) \right) \, ds > \beta. \]

Let \(K \) be the positive integer satisfying \(K > B > (K-1) \) and \(T_i = t_0 + (K+1)h + 2B/W(b) \), we have either
\(\text{(a) } m(E_1 \cap [t_0 + h, T_i]) > Kh \) or
\(\text{(b) } m(E_2 \cap [t_0 + h, T_i]) > 2B/W(b). \)

If (a) holds, then in \(E_1 \cap [t_0 + h, T_i] \) there exist \(K \) points \(t_1 < t_2 < \cdots < t_k \) satisfying \(t_j - t_{j-1} > h \) \((j = 2, 3, \ldots, K)\). From (4) and (5), we have
\[V(T_i, x_{T_i}) < B - \int_{t_0 + h}^{T_i} W(|x(s)|) \, ds \]
\[\leq B - \sum_{j=1}^{k} \int_{t_j-h}^{t_j} W \left(\frac{1}{n} \sum_{i=1}^{n} x_i^2(s) \right) \, ds \leq B - k\beta < 0. \]

If (b) holds, from (4) we have
\[V(T_i, x_{T_i}) < B - \int_{E_2 \cap [t_0 + h, T_i]} W(b) \, ds = B - W(b)m(E_2 \cap [t_0 + h, T_i]) < 0. \]

Thus either (a) or (b) implies \(V(T_i, x_{T_i}) < 0 \), a contradiction to \(V(t, x_{t_i}) > 0 \). Hence (3) holds.

In the following, we will show that
\[V(t, x_t(t_0, \varphi)) < W_1(e) + (N-1)d \quad \text{for all } t > T_1. \]

If (6) is not true, then there exists \(\sigma > T_1 \) such that \(V(\sigma, x_{\sigma}) < W_1(e) + (N-1)d \) and
\((A) B - W_2(H^*) - W_2(H^* \sqrt{nh}) > W_1(e) + (N-1)d - V(\sigma, x_{\sigma}), \)
\((B) V'(\sigma, x_{\sigma}) > 0. \)

From (A), we get
\[P(V(\sigma, x_{\sigma})) > V(\sigma, x_{\sigma}) + \overline{d} \]
\[\geq W_1(e) + (N-1)d - B + W_2(H^*) + W_3(H^* \sqrt{nh}) + \overline{d} \]
\[= W_1(e) + N\overline{d} - B + W_2(H^*) + W_3(H^* \sqrt{nh}) \]
\[\geq W_2(H^*) + W_3(H^* \sqrt{nh}) \geq V(\xi, x_{\xi}) \quad (t_0 \leq \xi \leq \sigma). \]
From condition (ii) we have $V'(\sigma, x_\sigma) \leq -W(|x(\sigma)|) \leq 0$, which contradicts (B). Therefore, (6) holds.

Similarly, there exists T_2, T_3, \ldots, T_N such that

$$V(t, x(t_0, \phi)) < W_1(\epsilon) + (N - k)\overline{d} \quad \text{for } t \geq T_k, \quad k = 2, 3, \ldots, N.$$

Then $V(t, x(t_0, \phi)) < W_1(\epsilon)$ for all $t \geq T_N$. From condition (i) we have $|x(t)| < \epsilon$ for all $t \geq T_N$, where

$$T_N = t_0 + N((k + 1)h + 2B/W(b)).$$

Since $N((k + 1)h + 2B/W(b))$ is independent of t_0, we have completed the proof of the theorem.

Example. Consider the equation

$$x'(t) = -a(t)x(t) + b(t)x(t - h)$$

where $a(t)$ and $b(t)$ are continuous functions, $0 < a \leq a(t) < \infty$, $|b(t)| \leq b < \mu a$, $0 < \mu < 1$.

One can choose $V(t, x) = \frac{1}{2}x^2(t)$, $W_1(|x(t)|) = \frac{1}{4}x^2(t)$, $W_2(|x(t)|) = x^2(t)$, $W_3(||x||) = ||x||^2$ and $P(s) = qs, q > 1$.

For $t \in [t_0, t_0 + h)$, if $V(t, x) = W_2(||\phi||) + W_3(||\phi||)$, that is $\frac{1}{2}x^2(t) = ||\phi||^2 + ||\phi||^2$. Then

$$V'(t, x) = x(t)x'(t) = -a(t)x^2(t) + b(t)x(t)x(t - h)$$

$$\leq -ax^2(t) + b\left[x^2(t) + x^2(t - h)\right]$$

$$\leq -\left(a - \frac{b}{2}\right)x^2(t) + \frac{b}{2}||\phi||^2 = -\left(2a - \frac{3b}{2}\right)||\phi||^2 - (2a - b)||\phi||^2 < 0.$$

For $t \in [t_0 + h, \infty)$ if $P(V(t, x)) > V(\xi, x_\xi)$ $(t - h \leq \xi \leq t)$, that is $qx^2(t) > x^2(\xi) (t - h \leq \xi \leq t)$, then $qx^2(t) > x^2(t - h)$.

$$V'(t, x) \leq -\left(a - \frac{b}{2}\right)x^2(t) + \frac{b}{2}x^2(t - h)$$

$$\leq -\left(a - \frac{b}{2}\right)x^2(t) + \frac{b}{2}qx^2(t) = -\left(a - b\left(\frac{1 + q}{2}\right)\right)x^2(t).$$

If we choose $q = 2/\mu - 1$, then $a - b((1 + q)/2) > 0$. Let

$$W(|x(t)|) = (a - b((1 + q)/2))x^2(t).$$

We can see that the conditions of the Theorem are satisfied. Therefore, the zero solution of (7) is uniformly asymptotically stable.

References

3. B. S. Razumikhin, *Application of Liapunov’s method to problems in the stability of systems with a delay*,
Avtomat. i Telemeh. 21 (1960), 740–749. (Russian)

225–239.

DEPARTMENT OF MATHEMATICS, HUNAN UNIVERSITY, CHANGSHA, HUNAN, PEOPLE’S REPUBLIC OF
CHINA