ISOMETRIES OF $\mathcal{A}_c(K)$

T. S. S. R. K. RAO

Abstract. We completely describe isometries of $\mathcal{A}_c(K)$, when K is a compact
Choquet simplex, using facially continuous functions on the extreme boundary.

1. Introduction. Let K be a compact convex set in a locally convex space and
denote by $E(K)$ the set of extreme points of K and by $\mathcal{A}_c(K)$ the continuous
complex-valued affine functions on K, equipped with the supremum norm.

We first describe a class of isometries for $\mathcal{A}_c(K)$ when K is any compact convex
set and give a sufficient condition on an isometry, in terms of facially continuous
functions on $E(K)$, so that the isometry in question is in the prescribed class and
then deduce that when K is a Choquet simplex, the class of isometries considered,
completely describes the isometries of $\mathcal{A}_c(K)$.

2. Notations and definitions. For the concepts and results of convexity theory used
here we cite [1].

A set $D \subset E(K)$ is said to be facially closed if there exists a closed split face F of
K such that $E(F) = D$. The sets D form the closed sets of a topology on $E(K)$
called the facial topology.

Let C denote the complex plane and Γ, the unit circle in C. For a probability
measure μ, let $r(\mu)$ denote the resultant of μ and Supp μ denote the topological
support of μ.

3. Description of isometries. Following the notations of [1], we denote by $Z(\mathcal{A}_c(K))$
the set of elements $b \in \mathcal{A}_c(K)$ such that for every $a \in \mathcal{A}_c(K)$ there exists $c \in \mathcal{A}_c(K)$
satisfying

$$c(x) = a(x) \cdot b(x) \quad \forall x \in E(K).$$

Since for any $b \in Z(\mathcal{A}_c(K))$, real and imaginary parts of b are in $Z(A(K))$, using
Corollary II.7.4 and Theorem II.7.10 of [1], we can easily see that for $b \in \mathcal{A}_c(K)$, b
is in $Z(\mathcal{A}_c(K))$ if and only if $b \mid E(K) \to C$ is continuous in the facial topology.

Let $Q: K \to K$ be an onto affine homeomorphism and let $a_0 \in Z(\mathcal{A}_c(K))$ be such
that $|a_0| = 1$ on $E(K)$. Define $\Phi: \mathcal{A}_c(K) \to \mathcal{A}_c(K)$ by $\Phi(a) = c$, where c is the
unique element of $\mathcal{A}_c(K)$ such that $c(x) = a(Q(x)) \cdot a_0(x) \forall x \in E(K)$.

It is easy to see that Φ is an onto isometry and $\Phi(1) = a_0$.
Theorem 3.1. Let \(\Phi : A_c(K) \rightarrow A_c(K) \) be any onto isometry. Assume
\[\Phi(1) \in Z(A_c(K)). \]
Then there exists an affine homeomorphism \(Q \) from \(K \) onto \(K \) such that
\[\Phi(a)(x) = a(Q(x)) \Phi(1)(x) \quad \forall x \in E(K). \]

Proof. Define \(\delta : K \rightarrow A(K)^* \) by \(\delta(x)(a) = a(x) \forall a \in A_c(K) \) and \(x \in K \). It is well known that \(\delta \) is an affine homeomorphism of \(K \) onto \(\{ f \in A_c(K)^* : \| f \| = \| f(1) \| = 1 \} \), with \(w^* \)-topology. Since \(\Phi^* : A_c(K)^* \rightarrow A_c(K)^* \) is an onto isometry and a \(w^* \)-homeomorphism it is easy to see that \(\Phi^*(\delta(E(K))) \subset \Gamma \cdot \delta(E(K)). \)

Let \(x \in E(K) \). Since \(A_c(K) \) separates points of \(K \) and \(1 \in A_c(K) \), there exist unique \(x' \in E(K) \) and \(t \in \Gamma \), such that \(\Phi^*(\delta(x)) = t \cdot \delta(x') \). Moreover
\[(*) \quad \Phi^*(\delta(x))(1) = \delta(x)(\Phi(1)) = \Phi(1)(x) = t. \]
Hence \(\Phi(1) \) is of modulus 1 on \(E(K) \). Let \(\Phi(1) = u + iv, u, v \in A(K) \) (real-valued functions in \(A_c(K) \)). Then since \(Z(A_c(K)) \) is selfadjoint, \(\Phi(1) = u - iv \) is in \(Z(A_c(K)) \). Define now \(T : A_c(K) \rightarrow A_c(K) \) by
\[T(a)(x) = \Phi(a)(x) \cdot \Phi(1)(x) \quad \forall x \in E(K). \]
Since \(|\Phi(1)| = 1 \) on \(E(K) \), it follows from the remarks in the beginning of this section that \(T \) is a well-defined, onto isometry. Moreover, \(T(1) = 1 \). It is easy to see that \(T^* \) maps \(\delta(K) \) onto \(\delta(K) \) and \(Q = \delta^{-1} \circ T^* \circ \delta \) is an affine homeomorphism of \(K \) onto \(K \). That \(\Phi(a)(x) = a(Q(x)) \cdot \Phi(1)(x) \forall x \in E(K) \) follows from \((*) \) and the definition of \(T \).

Definition (Effros). Say a closed set \(D \subset K \) is a dilated set if for any maximal measure \(\mu \) with \(r(\mu) \in D \), \(\text{Supp } \mu \subset D \).

Proposition 3.2. Let \(K \) be a compact Choquet simplex and let \(a_0 \in A_c(K) \) and \(| a_0 | = 1 \) on \(E(K) \). Then \(a_0 \in Z(A_c(K)) \).

Proof. In view of the results quoted in the beginning of this section it is sufficient to show that \(a_0 \) is facially continuous.

For a closed set \(B \subset T \), let \(B' = \{ x \in E(K) : a_0(x) \in B \} \). We claim that the closed set \(B' \) is a dilated set. Let \(\mu \) be a maximal probability measure with \(x_0 = r(\mu) \in B' \). Since
\[1 = | a_0(x_0) | = \int_{E(K)} a_0 d\mu \leq \int_{E(K)} |a_0| d\mu \leq 1, \]
we get that \(a_0 \equiv a_0(x_0) \) on \(\text{Supp } \mu \) and hence \(\text{Supp } \mu \subset B' \).

It now follows from a result of [2] that \(F, \) the closed convex hull of \(B' \), is a split face and hence \(\{ x \in E(K) : a_0(x) \in B \} = F \cap E(K) \) is a facially closed set.

Remark. When \(K \) is a simplex, \(a \in A_c(K) \) is an extreme point of the closed unit ball of \(A_c(K) \) iff \(| a | = 1 \) on \(E(K) \) iff \(a \in Z(A_c(K)) \) and is an extreme point of the closed unit ball of \(Z(A_c(K)) \).

Corollary 3.3. If \(K \) is a compact Choquet simplex then for any onto isometry \(\Phi \) of \(A_c(K) \), \(\exists \) an affine homeomorphism \(Q \) of \(K \) such that
\[\Phi(a)(x) = a(Q(x)) \cdot \Phi(1)(x) \quad \forall x \in E(K). \]
Proof. We have observed in the proof of Theorem 3.1 that $|\Phi(1)| = 1$ on $E(K)$, hence the conclusion follows from Corollary 3.2 and Theorem 3.1.

Remark. These results generalize the classical Banach-Stone theorem dealing with the isometries of $C_c(X)$, where X is a compact Hausdorff space; also generalized is the work of A. J. Lazar [3] on isometries of $A(K)$.

4. Example. We end by giving a simple example of a nonsimplicial compact convex set K and an isometry Φ of $A_c(K)$ which is not of the form described in Theorem 3.1.

Let K be the unit square in \mathbb{R}^2 centred at $(0,0)$, so

$$E(K) = \{(x, y): |x| = 1 = |y|\} \cdot K$$

has no proper split faces and hence $Z(A_c(K)) = \{a \cdot 1: a \in \mathbb{C}\}$. Any $f \in A_c(K)$ is of the form $f(x, y) = ax + by + c$ where $a, b, c \in \mathbb{C}$. Define $\Phi(f)(x, y) = cx + by + a$. Now $\|f\| = \max |a \pm b \pm c|$ and $\|\Phi(f)\| = \max |c \pm b \pm a|$ hence Φ is an isometry. It is obvious that Φ is onto. But $\Phi(1) = x$, a nonconstant. Hence Φ is not of the form in Theorem 3.1.

Acknowledgement. I thank my supervisor Professor A. K. Roy and the referee for simplifying the proof of Theorem 3.1.

References

Mathematics & Statistics Division, Indian Statistical Institute, 203 Barrackpore Trunk Road, Calcutta 700 035, India