Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A radial uniqueness theorem for meromorphic functions


Author: P. J. Rippon
Journal: Proc. Amer. Math. Soc. 85 (1982), 572-574
MSC: Primary 30D40
DOI: https://doi.org/10.1090/S0002-9939-1982-0660607-2
MathSciNet review: 660607
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A classical theorem of Lusin and Privalov states that a meromorphic function in the unit disc, which has radial limit zero on a set which is both of second category and metrically dense in some boundary arc, must vanish identically. We prove below a radial uniqueness theorem which includes the Lusin-Privalov theorem as a special case and which also generalises the Barth-Schneider-Tse asymptotic analogue of the F. and M. Riesz radial uniqueness theorem. The part of the proof relating to Baire category is disposed of by using the Collingwood maximality theorem.


References [Enhancements On Off] (What's this?)

  • [1] K. F. Barth and W. J. Schneider, An asymptotic analogue of the F. and M. Rieszradial uniqueness theorem, Proc. Amer. Math. Soc. 22 (1969), 53-54. MR 0247095 (40:364)
  • [2] E. F. Collingwood and A. J. Lohwater, Cluster sets, Cambridge Univ. Press, 1966. MR 0231999 (38:325)
  • [3] Y. Domar, On the existence of a largest subharmonic minorant for a given function, Ark. Mat. 3 (1954-58), 429-440. MR 0087767 (19:408c)
  • [4] V. I. Gavrilov and M. M. Mirzoyan, Boundary uniqueness theorems for meromorphic functions, Moscow Univ. Math. Bull. 34 (1979), 33-37. MR 563029 (81f:30030)
  • [5] N. N. Lusin and I. I. Privalov, Sur l'unicité et la multiplicité des fonctions analytiques, Ann. Sci. École Norm. Sup. (3) 42 (1925), 143-191. MR 1509265
  • [6] P. J. Rippon, The boundary cluster sets of subharmonic functions, J. London Math. Soc. (2) 17 (1978), 469-479. MR 500632 (81h:30036)
  • [7] K. F. Tse, An analog of the Lusin-Privalof radial uniqueness theorem, Proc. Amer. Math. Soc. 25 (1970), 310-312. MR 0262509 (41:7115)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30D40

Retrieve articles in all journals with MSC: 30D40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1982-0660607-2
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society