Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the monodromy of higher logarithms


Author: Dinakar Ramakrishnan
Journal: Proc. Amer. Math. Soc. 85 (1982), 596-599
MSC: Primary 53C30; Secondary 14D05, 22E40, 33A10
DOI: https://doi.org/10.1090/S0002-9939-1982-0660611-4
MathSciNet review: 660611
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The (multivalued) higher logarithms are interpreted, by studying their monodromy, as giving well-defined maps from $ {\mathbf{P}}_{\mathbf{C}}^1 - \left\{ {3\;{\text{points}}} \right\}$ into certain complex nilmanifolds with $ {{\mathbf{C}}^ * }$-actions.


References [Enhancements On Off] (What's this?)

  • [1] A. A. Beilinson, Higher regulators and values of $ L$-functions of curves, Functional Anal. Appl. 14 (1980), 116-118. MR 575206 (81k:14020)
  • [2] S. Bloch, Lectures on algebraic cycles, Duke Univ. Math. Ser., vol. IV, Department of Mathematics, Duke University, Durham, N.C., 1980. MR 558224 (82e:14012)
  • [3] -, Dilogarithm and extensions of Lie algebras, Algebraic $ K$-Theory, (M. Stein and E. Friedlander, eds.), Springer-Verlag, New York, 1981. MR 618298 (83b:17010)
  • [4] L. Lewin, Polylogarithms and associated functions, North-Holland, Amsterdam, 1981. MR 618278 (83b:33019)
  • [5] W. Thurston, Geometry and topology of $ 3$-manifolds, Chapter 7 by J. W. Milnor, Lecture notes, Princeton University.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C30, 14D05, 22E40, 33A10

Retrieve articles in all journals with MSC: 53C30, 14D05, 22E40, 33A10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1982-0660611-4
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society