Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Homotopy idempotents on finite-dimensional complexes split


Authors: Harold M. Hastings and Alex Heller
Journal: Proc. Amer. Math. Soc. 85 (1982), 619-622
MSC: Primary 55P99; Secondary 20E06, 20F05, 55P55
MathSciNet review: 660617
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that (unpointed) homotopy idempotents on finite-dimensional complexes split, and describe some geometric consequences.


References [Enhancements On Off] (What's this?)

  • [1] A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573
  • [2] Edgar H. Brown Jr., Cohomology theories, Ann. of Math. (2) 75 (1962), 467–484. MR 0138104
  • [3] T. A. Chapman, On some applications of infinite-dimensional manifolds to the theory of shape, Fund. Math. 76 (1972), no. 3, 181–193. MR 0320997
  • [4] T. A. Chapman and L. C. Siebenmann, Finding a boundary for a Hilbert cube manifold, Acta Math. 137 (1976), no. 3-4, 171–208. MR 0425973
  • [5] Jerzy Dydak, A simple proof that pointed FANR-spaces are regular fundamental retracts of ANR’s, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), no. 1, 55–62 (English, with Russian summary). MR 0442918
  • [6] Jerzy Dydak and Harold M. Hastings, Homotopy idempotents on two-dimensional complexes split, Proceedings of the International Conference on Geometric Topology (Warsaw, 1978) PWN, Warsaw, 1980, pp. 127–133. MR 656726
  • [7] Jerzy Dydak and Jack Segal, Shape theory, Lecture Notes in Mathematics, vol. 688, Springer, Berlin, 1978. An introduction. MR 520227
  • [8] David A. Edwards and Ross Geoghegan, Shapes of complexes, ends of manifolds, homotopy limits and the Wall obstruction, Ann. of Math. (2) 101 (1975), 521–535. MR 0375330
  • [9] David A. Edwards and Harold M. Hastings, Čech and Steenrod homotopy theories with applications to geometric topology, Lecture Notes in Mathematics, Vol. 542, Springer-Verlag, Berlin-New York, 1976. MR 0428322
  • [10] Peter Freyd, Splitting homotopy idempotents, Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965) Springer, New York, 1966, pp. 173–176. MR 0206069
  • [11] P. Freyd and A. Heller, Splitting homotopy idempotents (to appear).
  • [12] Harold M. Hastings and Alex Heller, Splitting homotopy idempotents, Shape theory and geometric topology (Dubrovnik, 1981) Lecture Notes in Math., vol. 870, Springer, Berlin-New York, 1981, pp. 23–36. MR 643520
  • [13] Alex Heller, On the representability of homotopy functors, J. London Math. Soc. (2) 23 (1981), no. 3, 551–562. MR 616562, 10.1112/jlms/s2-23.3.551
  • [14] P. J. Hilton and S. Wiley, Homology theory: an introduction to algebraic topology, Cambridge, 1962.
  • [15] J. Milnor, On axiomatic homology theory, Pacific J. Math. 12 (1962), 337–341. MR 0159327
  • [16] James E. West, Mapping Hilbert cube manifolds to ANR’s: a solution of a conjecture of Borsuk, Ann. of Math. (2) 106 (1977), no. 1, 1–18. MR 0451247

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55P99, 20E06, 20F05, 55P55

Retrieve articles in all journals with MSC: 55P99, 20E06, 20F05, 55P55


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1982-0660617-5
Article copyright: © Copyright 1982 American Mathematical Society