Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Homotopy idempotents on finite-dimensional complexes split


Authors: Harold M. Hastings and Alex Heller
Journal: Proc. Amer. Math. Soc. 85 (1982), 619-622
MSC: Primary 55P99; Secondary 20E06, 20F05, 55P55
DOI: https://doi.org/10.1090/S0002-9939-1982-0660617-5
MathSciNet review: 660617
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that (unpointed) homotopy idempotents on finite-dimensional complexes split, and describe some geometric consequences.


References [Enhancements On Off] (What's this?)

  • [1] A. K. Bousfield and D. M. Kan, Homotopy limits, completions, and localizations, Lecture Notes in Math., vol. 304, Springer-Verlag, Berlin and New York, 1973. MR 0365573 (51:1825)
  • [2] E. M. Brown, Cohomology theories, Ann. of Math. (2) 75 (1962), 467-484. MR 0138104 (25:1551)
  • [3] T. A. Chapman, On some applications of infinite-dimensional manifolds to the theory of shape, Fund. Math. 76 (1972), 181-193. MR 0320997 (47:9530)
  • [4] T. A. Chapman and L. Siebenmann, Finding a boundary for a Hilbert cube manifold, Acta Math. 139 (1976), 171-208. MR 0425973 (54:13922)
  • [5] J. Dydak, A simple proof that pointed, connected FANR-spaces are regular fundamental retracts of ANR's, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), 55-62. MR 0442918 (56:1293)
  • [6] J. Dydak and H. M. Hastings, Homotopy idempotents on two-dimensional complexes split, Proc. Internat. Conf. on Geometric Topology (Warsaw, 1978), (ed. K. Borsuk and A. Kirkor), PWN, Warsaw, 1980, pp. 127-133. MR 656726 (83h:55013)
  • [7] J. Dydak and J. Segal, Shape theory, Lecture Notes in Math., vol. 688, Springer-Verlag, Berlin and New York, 1978. MR 520227 (80h:54020)
  • [8] D. A. Edwards and R. Geoghegan, Shapes of complexes, ends of manifolds, homotopy limits, and the Wall obstruction, Ann. of Math. (2) 101 (1975), 521-535; Correction 104 (1976), 379. MR 0375330 (51:11525)
  • [9] D. A. Edwards and H. M. Hastings, Čech and Steenrod homotopy theory, with applications to geometric topology, Lecture Notes in Math., vol. 542, Springer-Verlag, Berlin and New York, 1976. MR 0428322 (55:1347)
  • [10] P. Freyd, Splitting homotopy idempotents, Proc. Conf. on Categorical Algebra (La Jolla 1965), (ed. S. Eilenberg and G. M. Kelley), Springer, Berlin and New York, 1966, pp. 173-176. MR 0206069 (34:5894)
  • [11] P. Freyd and A. Heller, Splitting homotopy idempotents (to appear).
  • [12] H. M. Hastings and A. Heller, Splitting homotopy idempotents, Conf. on Shape and Pro-Homotopy (Dubrovnik, 1981), (ed. S. Mardešić and J. Segal), Lecture Notes in Math., vol. 870, Springer-Verlag, Berlin and New York, 1981, pp. 23-36. MR 643520 (83a:55017)
  • [13] A. Heller, On the representability of homotopy functors (to appear). MR 616562 (82h:55012)
  • [14] P. J. Hilton and S. Wiley, Homology theory: an introduction to algebraic topology, Cambridge, 1962.
  • [15] J. Milnor, On axiomatic homology theory, Pacific J. Math. 12 (1962), 337-341. MR 0159327 (28:2544)
  • [16] J. West, Mapping Hilbert cube manifolds to ANR's: A solution to a conjecture of Borsuk, Ann. of Math. (2) 106 (1977), 1-18. MR 0451247 (56:9534)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55P99, 20E06, 20F05, 55P55

Retrieve articles in all journals with MSC: 55P99, 20E06, 20F05, 55P55


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1982-0660617-5
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society