Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

The dimension of inverse limit and $ N$-compact spaces


Author: M. G. Charalambous
Journal: Proc. Amer. Math. Soc. 85 (1982), 648-652
MSC: Primary 54F45; Secondary 54G20
MathSciNet review: 660622
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For each $ k = 1,2, \ldots ,\infty $, $ N$, we construct a normal $ N$-compact space $ X$ with $ \dim X = k$, where dim denotes covering dimension, which is the limit space of a sequence of zero-dimensional Lindelöf spaces.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54F45, 54G20

Retrieve articles in all journals with MSC: 54F45, 54G20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1982-0660622-9
Keywords: Normal, Lindelöf, paracompact, $ N$-compact space, covering and inductive dimension
Article copyright: © Copyright 1982 American Mathematical Society