Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The spaces which contain an $ S$-space


Author: W. F. Pfeffer
Journal: Proc. Amer. Math. Soc. 85 (1982), 659-660
MSC: Primary 54A25; Secondary 28A05, 54H05
DOI: https://doi.org/10.1090/S0002-9939-1982-0660624-2
MathSciNet review: 660624
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Under the continuum hypothesis, we show that a $ {T_1}$-space $ X$ contains an $ S$-space if and only if there is an uncountable locally countable set $ E \subset X$ containing no Borel subset of $ X$.


References [Enhancements On Off] (What's this?)

  • [GP] R. J. Gardner and W. F. Pfeffer, Are diffused, regular, Radon measures $ \sigma $-finite, J. London Math. Soc. 20 (1979), 485-494. MR 561140 (82i:28016)
  • [J] I. Juhasz, Cardinal functions in topology, Math. Centre Tracts 34, Math. Centrum, Amsterdam, 1971. MR 0340021 (49:4778)
  • [K] K. Kuratowski, Topology, Academic Press, New York, 1966. MR 0217751 (36:840)
  • [MS] D. A. Martin and R. M. Solovay, Internal Cohen extensions, Ann. Math. Logic 2 (1970), 143-178. MR 0270904 (42:5787)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54A25, 28A05, 54H05

Retrieve articles in all journals with MSC: 54A25, 28A05, 54H05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1982-0660624-2
Keywords: Separable, Lindelöf, locally countable, Borel set, continuum hypothesis, Martin's axiom
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society