Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An inequality for invariant factors


Author: Robert C. Thompson
Journal: Proc. Amer. Math. Soc. 86 (1982), 9-11
MSC: Primary 15A36; Secondary 15A39
DOI: https://doi.org/10.1090/S0002-9939-1982-0663854-9
MathSciNet review: 663854
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A divisibility relation is proved connecting the invariant factors of integral matrices $ A$, $ B$, $ C$ when $ C = AB$.


References [Enhancements On Off] (What's this?)

  • [1] L. Gerstein, A multiplicative property of invariant factors, Linear and Multilinear Algebra 2 (1974), 141-142. MR 0352128 (50:4615)
  • [2] T. Klein, The multiplication of Schur functions and extensions of $ p$-modules, J. London Math. Soc. 43 (1968), 280-284. MR 0228481 (37:4061)
  • [3] M. Newman, A result about determinantal divisors, Linear and Multilinear Algebra (to appear). MR 662012 (83h:15012)
  • [4] -, Integral matrices, Academic Press, New York, 1972. MR 0340283 (49:5038)
  • [5] M. F. Smiley, Inequalities related to Lidskii's, Proc. Amer. Math. Soc. 19 (1968), 1029-1034. MR 0233833 (38:2154)
  • [6] R. C. Thompson, Interlacing inequalities for invariant factors, Linear Algebra Appl. 24 (1979), 1-31. MR 524823 (81g:15014)
  • [7] -, Left multiples and right divisors of integral matrices (submitted).
  • [8] -, Eigenvalues, singular values, and number theory, Santa Barbara Conference on Matrix Theory, 1977.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 15A36, 15A39

Retrieve articles in all journals with MSC: 15A36, 15A39


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1982-0663854-9
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society