Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The global dimension of FBN rings with enough clans


Author: Robert F. Damiano
Journal: Proc. Amer. Math. Soc. 86 (1982), 25-28
MSC: Primary 16A60; Secondary 16A33
DOI: https://doi.org/10.1090/S0002-9939-1982-0663859-8
MathSciNet review: 663859
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For an FBN ring $ R$, a classical set of prime ideals $ \left\{ {{P_1}, \ldots ,{P_n}} \right\}$ is one for which the semiprime ideal $ N = \cap _{i = 1}^n{P_i}$ satisfies the Artin-Rees property. A minimal classical set is called a clan. We say an FBN ring $ R$ has enough clans if each prime ideal $ P$ is an element of a clan. In this paper, we show that for such rings the Krull dimension is less than or equal to the global dimension.


References [Enhancements On Off] (What's this?)

  • [1] F. W. Anderson and K. R. Fuller, Rings and categories of modules, Graduate Texts in Math., Springer-Verlag, Berlin and New York, 1974. MR 0417223 (54:5281)
  • [2] H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-28. MR 0153708 (27:3669)
  • [3] M. Boratynski, A change of rings theorem and the Artin-Rees property, Proc. Amer. Math. Soc. 53 (1975), 307-310. MR 0401840 (53:5667)
  • [4] R. Damiano and Z. Papp, On consequences of stability, Comm. Algebra 9 (1981), 747-764. MR 609221 (82h:16032)
  • [5] -, Stable rings with finite global dimension, Hudson Symposium on Recent Advances in Non-Commutative Ring Theory at Plattsburgh, New York, Springer-Verlag, Berlin and New York.
  • [6] A. V. Jategaonkar, Injective modules and localization in noncommutative noetherian rings, Trans. Amer. Math. Soc. 190 (1974), 109-123. MR 0349727 (50:2220)
  • [7] -, Relative Krull dimension and prime ideals in right noetherian rings, Comm. Algebra (2) (1974), 429-468. MR 0357494 (50:9962)
  • [8] S. Jondrup, Homological dimensions of some P.I. rings, Comm. Algebra 8 (1980), 685-696. MR 561548 (82f:16013)
  • [9] B. Mueller, Localization in fully bounded noetherian rings, Pacific J. Math. 67 (1976), 233-245. MR 0427351 (55:385)
  • [10] -, Localization of non-commutative noetherian rings at semiprime ideals, Lecture notes, McMaster Univ., 1975.
  • [11] R. Resco, L. Small and J. T. Stafford, Krull and global dimensions of semiprime noetherian $ PI$-rings (preprint).
  • [12] J. J. Rotman, An introduction to homological algebra, Academic Press, New York, 1980. MR 538169 (80k:18001)
  • [13] J. Shapiro, $ R$-sequences in fully bounded noetherian rings Comm. Algebra 7 (1979), 819-831. MR 529495 (81c:16004)
  • [14] B. Stenström, Rings of quotients, Springer-Verlag, Berlin and New York, 1975. MR 0389953 (52:10782)
  • [15] D. Ž. Djoković, Epimorphisms of modules which must be isomorphisms, Canad. Math. Bull. 16 (1973), 513-515. MR 0346014 (49:10740)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A60, 16A33

Retrieve articles in all journals with MSC: 16A60, 16A33


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1982-0663859-8
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society