Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the Hahn-Banach extension property


Author: Jonathan M. Borwein
Journal: Proc. Amer. Math. Soc. 86 (1982), 42-46
MSC: Primary 46A40; Secondary 06F20
DOI: https://doi.org/10.1090/S0002-9939-1982-0663863-X
MathSciNet review: 663863
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A self-contained and brief proof is given of the equivalence of the Hahn-Banach extension property (HB) and the conditional order completeness of the range space (LUB). Various other equivalences are discussed.


References [Enhancements On Off] (What's this?)

  • [1] W. Bonnice and R. Silverman, The Hahn-Banach theorem for finite dimensional spaces, Trans. Amer. Math. Soc. 121 (1966), 210-222. MR 0185412 (32:2879)
  • [2] -, The Hahn-Banach extension and the least upper bound properties are equivalent, Proc. Amer. Math. Soc. 18 (1967), 843-850. MR 0215050 (35:5895)
  • [3] J. M. Borwein, A Lagrange multiplier theorem and a sandwich theorem for convex relations, Math. Scand. (1981). MR 631335 (83d:49027)
  • [4] M. M. Day, Normed linear spaces, Springer-Verlag, Berlin and New York, 1973. MR 0344849 (49:9588)
  • [5] K.-H. Elster and R. Nehse, Konjugierte operatoren und subdifferentiale, Math. Operationsforsch. Statist. 6 (1975), 641-657. MR 0388035 (52:8872)
  • [6] -, ,Necessary and sufficient conditions for the order-completeness of partially ordered vector spaces, Math. Nachr. 81 (1981), 301-311. MR 0493244 (58:12273)
  • [7] M. M. Fel'dman, Sufficient conditions for the existence of supporting operators for sublinear operators, Sibirsk. Math. Ž. 16 (1975), 132-138. (Russian) MR 0380344 (52:1244)
  • [8] A. D. Ioffe, Nonsmooth analysis: Differential calculus of nondifferentiable mappings, Trans. Amer. Math. Soc. 266 (1981), 1-55. MR 613784 (82j:58018)
  • [9] -, A new proof of the equivalence of the Hahn-Banach extension and the least upper bound properties, Proc. Amer. Math. Soc. 82 (1981), 385-389. MR 612725 (82j:46003)
  • [10] D. G. Luenberger, Optimization by vector space methods, Wiley, New York, 1969. MR 0238472 (38:6748)
  • [11] A. L. Peressini, Ordered topological vector spaces, Harper & Row, New York, 1967. MR 0227731 (37:3315)
  • [12] R. Silverman and Ti Yen, The Hahn-Banach theorem and the least upper bound property, Trans. Amer. Math. Soc. 90 (1959), 523-526. MR 0102725 (21:1511)
  • [13] T.-O. To, The equivalence of the least upper bound property and the Hahn-Banach extension property in ordered vector spaces, Proc. Amer. Math. Soc. 30 (1971), 287-296. MR 0417746 (54:5794)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46A40, 06F20

Retrieve articles in all journals with MSC: 46A40, 06F20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1982-0663863-X
Keywords: Ordered vector space, Hahn-Banach extension property, least upper bound, Lagrange multiplier theorem
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society