AN INFINITE CLASS OF PERIODIC SOLUTIONS OF PERIODICALLY PERTURBED DUFFING EQUATIONS AT RESONANCE

TUNG-REN DING

ABSTRACT. In this paper, by using a generalised form of the Poincaré-Birkhoff Theorem, we demonstrate that the Duffing equation

\[\frac{d^2 x}{dt^2} + g(x) = p(t) \quad (\equiv p(t + 2\pi)) \]

may also admit an infinite number of \(2\pi\)-periodic solutions even in a resonance case.

1. In this paper we study the existence problem of periodic solutions for the Duffing equation

\[\frac{d^2 x}{dt^2} + g(x) = p(t) \]

where \(g(x), p(t) \in C(R, R)\) and \(p(t)\) is \(2\pi\)-periodic.

In the super-linear case, that is,

\[\lim_{|x| \to \infty} [x^{-1}g(x)] = \infty, \]

it has been proved in a recent paper by W. Y. Ding that (1.1) has infinitely many \(2\pi\)-periodic solutions [1].

D. E. Leach proved the existence and uniqueness of \(2\pi\)-periodic solution of (1.1) under the following Loud condition

\[m^2 < \lambda \leq g'(x) \leq \mu < (m + 1)^2 \quad (g(0) = 0), \]

with a given integer \(m \geq 0\) and two such constants \(\lambda\) and \(\mu\) [2]. R. Reissig proved the existence of periodic solutions of (1.1) under a weaker condition [3]

\[m^2 < \lambda \leq x^{-1}g(x) \leq \mu < (m + 1)^2, \quad |x| \geq a > 0. \]

The crucial point of the conditions above is to exclude the resonance cases. At resonance, (1.1) may have no bounded solution [6]; therefore, the existence problem of periodic solutions challenges attention. A. C. Lazer and D. E. Leach, and L. Césari succeeded to prove the existence of \(2\pi\)-periodic solutions of (1.1) at a point of resonance provided that \(h(x) = g(x) - m^2x\) is bounded and some other additional conditions are assumed [4, 5]. In a recent paper, the present author resolved the existence problem of \(2\pi\)-periodic solutions of (1.1) under a weakened version of (1.2) [6]:

\[m^2 \leq g'(x) \leq (m + 1)^2 \quad (g(0) = 0). \]

Received by the editors February 25, 1981.

1980 Mathematics Subject Classification. Primary 34C25; Secondary 70K20.

Key words and phrases. Duffing equation, resonance, periodic solutions, a generalised Poincaré-Birkhoff Theorem.
In this paper, by using a generalized form of the Poincaré-Birkhoff Theorem due to W. Y. Ding, we will demonstrate that (1.1) may also admit an infinite number of 2π-periodic solutions even in a resonance case. This shows once more the complexity of (1.1) at resonance.

2. We need the following hypotheses:

(H1) Let $g(x) \in C'(R, R)$, and let K be a positive constant, such that

$$|g'(x)| \leq K, \quad x \in R;$$

(H2) There exist two constants $A_0 > 0$ and $M_0 > 0$, such that

$$x^{-1}g(x) \geq A_0, \quad |x| \geq M_0.$$

Then we consider the auxiliary equation

$$\frac{d^2z}{dt^2} + g(z) = 0$$

and its equivalent system

$$\begin{align*}
\frac{dz}{dt} &= w, \\
\frac{dw}{dt} &= -g(z).
\end{align*}$$

This is a planar autonomous system whose orbits are curves determined by the following equation

$$V(z, w) \equiv \frac{1}{2}w^2 + G(z) = c,$$

where $G(z) = \int_0^z g(u) \, du$ and c is a parameter.

The hypothesis (H2) obviously implies

$$\lim_{|z| \to \infty} G(z) = \infty \quad \text{and} \quad \lim_{|z| + |w| \to \infty} V(z, w) = \infty.$$

It follows that the set $V^{-1}(c)$ is compact. Furthermore, (H2) yields that there exist constants $C_0 > 0$ and $A_1 > 0$ such that if $c \geq c_0$, then

$$w^2 + zg(z) \geq A_1(z^2 + w^2), \quad (z, w) \in V^{-1}(c).$$

Note that the left-hand member of the last inequality is just the directional derivative of $V(z, w)$ along the vector (z, w). Therefore, there is no critical point in $V^{-1}(c)$ for $c \geq c_0$, and $V^{-1}(c)$ is a compact one-dimensional manifold. Furthermore $V^{-1}(c)$ is star-shaped about the origin. We have thus proved

Lemma 2.1. If (H2) holds, then $V^{-1}(c)$ is a closed curve for $c \geq c_0$ which is star-shaped about the origin.

In the sequel, we will denote the curve $V^{-1}(c)$ by Γ_c. It follows from Lemma 2.1 that each curve Γ_c ($c \geq c_0$) intersects the z-axis at two points: $(h(c), 0)$ and $(-h_1(c), 0)$, where $h(c) > 0$ and $h_1(c) > 0$ are uniquely determined by the formula

$$G(h(c)) = G(-h_1(c)) = c.$$

Let $(z(t), w(t))$ be any solution of (2.1') whose orbit is Γ_c ($c \geq c_0$). Clearly, this solution is periodic. Let $\tau(c)$ denote the least positive period of this solution. It follows from the equation (2.2) that

$$\tau(c) = \sqrt{2} \int_{-h_1(c)}^{h(c)} \frac{du}{\sqrt{c - G(u)}}.$$
To obtain the desired result, we need another hypothesis:

\((H_3)\) There exist a constant \(\alpha > 0\), an integer \(m > 0\), and two sequences \(\{a_k\}\) and \(\{b_k\}\), such that \(a_k \to \infty\) and \(b_k \to \infty\) as \(k \to \infty\); and moreover

\[
\tau(a_k) < \frac{2\pi}{m} - \alpha, \quad \tau(b_k) > \frac{2\pi}{m} + \alpha.
\]

Now we are in a position to state the main result of this paper.

Theorem 2.1. Assume \((H_1)-(H_3)\) hold. Then equation (1.1) has infinitely many \(2\pi\)-periodic solutions.

A concrete example for applications of this theorem will be given in §5.

3. To prove Theorem 2.1, we briefly restate a generalized form of the Poincaré-Birkhoff fixed point theorem in Theorem A below [7].

Let \(D\) denote an annular region in the \((x, y)\)-plane. The boundary of \(D\) consists of two simple closed curves: the inner boundary curve \(C_1\) and the outer boundary curve \(C_2\). Let \(D_1\) denote the simple connected open set bounded by \(C_1\). Consider an area-preserving mapping \(T: \mathbb{R}^2 \to \mathbb{R}^2\). Suppose that \(T(D) \subset \mathbb{R}^2 - \{0\}\), where 0 is the origin. Let \((\gamma, \theta)\) be the polar coordinate of \((x, y)\), that is, \(x = \gamma \cos \theta, y = \gamma \sin \theta\). Assume the restriction \(T|_D\) is given by

\[
\gamma^* = f(\gamma, \theta), \quad \theta^* = \theta + g(\gamma, \theta),
\]

where \(f\) and \(g\) are continuous in \((\gamma, \theta)\), and \(2\pi\)-periodic in \(\theta\).

Theorem A. Besides the above-mentioned assumptions, we assume that

(i) \(C_1\) is star-shaped about the origin;
(ii) \(0 \in T(D_1)\);
(iii) \(g(\gamma, \theta) > 0\) \((< 0)\), \((\gamma \cos \theta, \gamma \sin \theta) \in C_1\);
\[
g(\gamma, \theta) < 0\) \((> 0)\), \((\gamma \cos \theta, \gamma \sin \theta) \in C_2\).

Then \(T\) has at least two fixed points in \(D\).

Now, let \(\Gamma_{a_k}\) and \(\Gamma_{b_k}\) be the curves given by Lemma 2.1, where the specified parameters \(a_k, b_k \geq c_0\) are given by \((H_3)\), for \(k \geq n_0\). We may rearrange \(\{a_k\}\) and \(\{b_k\}\), if necessary, so that \(a_k < b_k < a_{k+1}\) for \(k \geq n_0\). Then, \(\Gamma_{a_k}\) and \(\Gamma_{b_k}\) bound an annular region \(A_k\), and \(\Gamma_{b_k}\) and \(\Gamma_{a_{k+1}}\) bound another annular region \(B_k\), for \(k \geq n_0\).

Let \(T: \mathbb{R}^2 \to \mathbb{R}^2\) be the Poincaré mapping induced by equation (1.1). It is well known that each fixed point of \(T\) corresponds to a \(2\pi\)-periodic solution of (1.1). In the following section, we will apply Theorem A to show that \(T\) has at least two fixed points in each \(A_k\) and \(B_k\) for sufficiently large \(k\). As a consequence, (1.1) has an infinite class of \(2\pi\)-periodic solutions.

4. Consider the equivalent system of (1.1),

\[
\frac{dx}{dt} = y, \quad \frac{dy}{dt} = -g(x) + p(t).
\]

Let \((\bar{x}(t, x, y), \bar{y}(t, x, y))\) be the solution of (4.1) through the initial point \((\bar{x}(0), \bar{y}(0)) = (x, y)\). It is not hard to show that every such solution exists on the whole \(t\)-axis under condition \((H_1)\). Then the Poincaré map \(T: \mathbb{R}^2 \to \mathbb{R}^2\) is well defined by

\[(x, y) \mapsto (\bar{x}(2\pi, x, y), \bar{y}(2\pi, x, y)).\]
It is well known that T is an area-preserving homeomorphism.

By applying the transform $x(t) = \gamma(t) \cos \theta(t)$, $y(t) = \gamma(t) \sin \theta(t)$ to (4.1), we get the equations for $\gamma(t)$ and $\theta(t)$,

\begin{align*}
\frac{d\gamma}{dt} &= \gamma \cos \theta \cdot \sin \theta - g(\gamma \cos \theta) \sin \theta + p(t) \sin \theta, \\
\frac{d\theta}{dt} &= -\sin^2 \theta - \frac{1}{\gamma} (g(\gamma \cos \theta) \cos \theta - p(t) \cos \theta),
\end{align*}

whenever $\gamma \neq 0$.

Let $(\gamma(t, \gamma, \theta), \theta(t, \gamma, \theta))$ be the solution of (4.2) through the initial point $(\gamma(0), \theta(0)) = (\gamma, \theta)$. Then the map T can also be written in the polar coordinate form

\begin{align*}
\gamma^* &= \gamma(2\pi, \gamma, \theta), & \theta^* &= \theta(2\pi, \gamma, \theta) + 2l \pi,
\end{align*}

where l is an arbitrary integer. It can be easily seen that if (γ, θ) is such that

\begin{align*}
\gamma(t, \gamma, \theta) > 0, & & t \in [0, 2\pi],
\end{align*}

then $\theta(2\pi, \gamma, \theta)$ is well defined and continuous in (γ, θ), and moreover,

\begin{align*}
\theta(2\pi, \gamma, \theta + 2\pi) &= \theta(2\pi, \gamma, \theta) + 2\pi.
\end{align*}

Next, we take the transform $z(t) = \rho(t) \cos \phi(t)$, $w(t) = \rho(t) \sin \phi(t)$ for system (2.1'). Then the resulting equations for $\rho(t)$ and $\phi(t)$ are

\begin{align*}
\frac{d\rho}{dt} &= \rho \cos \phi \cdot \sin \phi - g(\rho \cos \phi) \sin \phi, \\
\frac{d\phi}{dt} &= -\sin^2 \phi - \frac{1}{\rho} g(\rho \cos \phi) \cos \phi.
\end{align*}

Let $(\rho(t, \rho, \phi), \phi(t, \rho, \phi))$ be the solution of (4.6) through the initial point $(\rho(0), \phi(0)) = (\rho, \phi)$.

Lemma 4.1. Let $\Phi(\rho, \phi) = \phi(2\pi, \rho, \phi) - \phi$, and let $\beta = \min\{2\pi, m\alpha A_1\}$, where m, α and A_1 are given in (H$_3$) and (2.3). Then we have

\begin{align*}
\Phi(\rho, \phi) &\leq -2m\pi - \beta, & \rho \cos \phi, \rho \sin \phi \in \Gamma_{ak};
\Phi(\rho, \phi) &\geq -2m\pi + \beta, & \rho \cos \phi, \rho \sin \phi \in \Gamma_{bk}.
\end{align*}

Proof. Let $(z, w) = (\rho \cos \phi, \rho \sin \phi) \in \Gamma_{ak}$. Consider the solution $(\rho(t, \rho, \phi), \phi(t, \rho, \phi))$ of (4.6). It follows from (2.3) and the second equation of (4.6) that

\begin{align*}
\phi'(t, \rho, \phi) &\leq -A_1,
\end{align*}

provided that ρ is sufficiently large.

Since the solution $(\tilde{z}(t, z, w), \tilde{w}(t, z, w))$ of (2.1') has the least period $\tau(a_k)$, we see that the time in which $\tilde{\phi}(t)$ has a decrement 2π is just $\tau(a_k)$. Write

\begin{align*}
\Phi(\rho, \phi) &= \phi(2\pi, \rho, \phi) - \phi = \phi(2\pi) - \phi(0) = -2l \pi - \sigma,
\end{align*}

where $l \geq 0$ is an integer, and $0 \leq \sigma < 2\pi$. Let t_{σ} denote the time in which $\tilde{\phi}(t)$ decreases from $\phi - 2l \pi$ to $\phi - 2l \pi - \sigma$. Then we have

\begin{align*}
l \cdot \tau(a_k) + t_{\sigma} &= 2\pi.
\end{align*}
Since $0 \leq t_\sigma < \tau(a_k)$, we obtain
\[2\pi = l \cdot \tau(a_k) + t_\sigma < (l + 1)\tau(a_k) \leq (l + 1)\left(\frac{2\pi}{m} - \alpha\right). \]

It follows that $l \geq m$. If $l \geq m + 1$, we have
\[(4.9) \quad \Phi(\rho, \varphi) \leq -2l\pi \leq -(m + 1)\pi. \]

Now, assume $l = m$. Then we have
\[(4.10) \quad t_\sigma = 2\pi - m \cdot \tau(a_k) \geq 2\pi - m\left(\frac{2\pi}{m} - \alpha\right) = m\alpha. \]

By (4.8) and (4.10), we obtain
\[-\sigma = \int_{l \cdot \tau(a_k) + t_\sigma} \varphi'(t, \rho, \varphi) \, dt \leq -A_1 t_\sigma \leq -m\alpha A_1. \]

Thus we have
\[(4.11) \quad \Phi(\rho, \varphi) = -2l\pi - \sigma \leq -2m\pi - m\alpha A_1. \]

Combining (4.9) and (4.11) yields the first inequality of (4.7).

The second inequality of (4.7) can be proved in a similar way. The proof of Lemma 4.1 is then completed.

Lemma 4.2. Let $\gamma(\gamma, \theta) = \bar{d}(2\pi, \gamma, \theta) - \theta$. Then there exists $\gamma_0 > 0$ such that, for $\gamma \geq \gamma_0$,
\[|\Theta(\gamma, \theta) - \Phi(\gamma, \theta)| = |\bar{d}(2\pi, \gamma, \theta) - \varphi(2\pi, \gamma, \theta)| \leq \beta. \]

Proof. Let $(\bar{x}(t, x, y), \bar{w}(t, x, y))$ be the solution of (2.1') through the initial point $(\bar{x}(0), \bar{w}(0)) = (x, y)$. Let
\[\begin{align*}
 u(t) &= u(t, x, y) = \bar{x}(t, x, y) - \bar{x}(t, x, y), \\
 v(t) &= v(t, x, y) = \bar{y}(t, x, y) - \bar{w}(t, x, y).
\end{align*} \]

Then we have
\[\frac{du}{dt} = v, \quad \frac{dv}{dt} = p(t) - g'(\sigma(t))u, \]
where $\sigma(t) = \bar{x}(t) + \lambda(t)(\bar{x}(t) - \bar{x}(t)), 0 \leq \lambda(t) \leq 1$.

Let $\eta(t) = (u^2(t) + v^2(t))^{1/2}$. Then we have
\[\eta \frac{d\eta}{dt} = uv + p(t)v - g'(\sigma(t))uv. \]

It follows from (H_1) that
\[(4.13) \quad \left| \frac{d\eta}{dt} \right| \leq \frac{1}{2}(1 + K)\eta + B, \]

where B is a bound of $|p(t)|$ in $[0, 2\pi]$. The differential inequality (4.13) together with $\eta(0) = 0$ yields
\[(4.14) \quad \eta(t) \leq \frac{2B}{K + 1}(e^{(K+1)\pi} - 1) \equiv H_0, \]
for $t \in [0, 2\pi]$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Next write \(\psi(t) = \psi(t, \gamma, \theta) = \varphi(t, \gamma, \theta) - \varphi(t, \gamma, \theta) \), where \((\gamma, \theta)\) is the polar coordinate of \((x, y)\), i.e., \((\gamma \cos \theta, \gamma \sin \theta) = (x, y)\). It is clear that if \(|\psi(t)| < \pi\), then \(\psi(t)\) is just the angle between the vectors \((x(t), y(t))\) and \((z(t), w(t))\). By the law of cosines, we have

\[
\cos \psi(t) = \frac{\gamma^2(t) + \rho^2(t) - \eta^2(t)}{2\gamma(t)\rho(t)} \geq 1 - \frac{H_0^2}{2\gamma(t)\rho(t)}.
\]

On the other hand, we have \(\gamma(t) \geq \rho(t) - \eta(t) \geq \rho(t) - H_0\). Therefore, under the assumption that \(|\psi(t)| < \pi\) and \(\rho(t) - H_0 > 0\), we have

\[
\cos \psi(t) \geq 1 - \frac{H_0^2}{2\rho(t)(\rho(t) - H_0)}.
\]

Note that

\[
F(\gamma, \varphi) = \inf_{0 \leq t \leq 2\pi} \tilde{\varphi}(t) = \inf_{0 \leq t \leq 2\pi} \tilde{\varphi}(t, \gamma, \varphi)
\]

becomes arbitrarily large if \(\gamma\) is sufficiently large. It follows that there is a constant \(\gamma_0 > 0\) such that, for \(\gamma \geq \gamma_0\) and \(t \in [0, 2\pi]\),

\[
\rho(t) - H_0 > 0; \quad \frac{H_0^2}{2\rho(t)(\rho(t) - H_0)} < 1 - \cos \delta,
\]

where \(\delta = \min(\pi/2, \beta)\). From (4.15) and (4.16), we conclude that if \(|\psi(t)| < \pi\) and \(t \in [0, 2\pi]\), then the inequality

\[
|\psi(t)| < \delta
\]

holds.

Since \(\psi(0) = 0\) and \(\psi(t)\) varies continuously as \(t\) increases from 0 to \(2\pi\), we can see that (4.17) holds for any \(t \in [0, 2\pi]\). In particular, we have

\[
|\psi(2\pi)| = |\phi(2\pi, \gamma, \theta) - \varphi(2\pi, \gamma, \theta)| < \delta \leq \beta,
\]

for \(\gamma \geq \gamma_0\). This proves Lemma 4.2.

PROOF OF THEOREM 2.1. Let \(c_1 > c_0\) be so large that \((\gamma, \theta) \in \Gamma_{c_1}\) with \(c \geq c_1\) implies \(\gamma \geq \gamma_0\), where \(\gamma_0\) is specified in Lemma 4.2. There is no loss of generality to assume \(a_k \geq c_1\) for \(k \geq n_0\). It follows that \(\gamma(t, \gamma, \theta) \geq \rho(t) - H_0 > 0\), \(t \in [0, 2\pi]\), provided that \((\gamma, \theta) \in \Lambda_k\) for \(k \geq n_0\).

Thus the restriction \(T|A_k\) can be written in (4.3), where the function \(\bar{\phi}(2\pi, \gamma, \theta)\) is continuous on \(A_k\) and satisfies the relation (4.4). Now, we put the integer \(l = m\) in (4.3). Then (4.3) can be rewritten in the form of

\[
\gamma^* = \tilde{\gamma}(2\pi, \gamma, \theta), \quad \theta^* = \theta + \Theta_1(\gamma, \theta),
\]

with \(\Theta_1(\gamma, \theta) = \Theta(\gamma, \theta) - 2m\pi\). By Lemma 4.2, we obtain

\[
|\Theta_1(\gamma, \theta) - \Phi(\gamma, \theta) - 2m\pi| < \beta,
\]

which together with (4.7) yields

\[
\Theta_1(\gamma, \theta) < 0, \quad (\gamma \cos \theta, \gamma \sin \theta) \in \Gamma_{a_k};
\]

\[
\Theta_1(\gamma, \theta) > 0, \quad (\gamma \cos \theta, \gamma \sin \theta) \in \Gamma_{b_k},
\]

for \(k \geq n_0\), where \(n_0\) is large enough.

This proves the validity of condition (iii) of Theorem A for the restriction \(T|A_k\).
(k ≥ n₀). Since γ ≥ γ₀ implies 2γπ ≥ 2π — H₀ > 0, so the condition (ii) of Theorem A can be easily verified. By Lemma 2.1, the condition (i) of Theorem A also holds. Therefore, we can apply Theorem A to ensure the existence of at least two fixed points of T in A_k (k ≥ n₀). This means that (1.1) has at least two 2π-periodic solutions with initial points in A_k. In the same way, we can prove that T has at least two fixed points in B_k which correspond to two 2π-periodic solutions of (1.1). Since each periodic solution of (1.1) is bounded by a Γₜₙ, so the above-specified 2π-periodic solutions of (1.1) constitute an infinite class.

The proof of Theorem 2.1 is thus completed.

5. Finally, we give a concrete example for applications of Theorem 2.1.

Let m be a positive integer, and let

\[g(x) = x \left[m^2 + \frac{1}{10} \cos \log(1 + x^2) - \frac{x^2}{10(1 + x^2)} \right]. \]

A direct calculation yields

\[m^2 - \frac{1}{2} \leq g'(x) \leq m^2 + \frac{1}{2}. \]

It follows that (H₁) and (H₂) hold for g(x).

Consider the auxiliary equation

\[\frac{d^2 z}{dt^2} + g(z) = 0. \] (5.1)

According to (2.2), we have

\[V(z, w) = \frac{1}{2} w^2 + \bar{G}(z) = c, \]

where

\[\bar{G}(z) = \int_0^z g(u) \, du = \frac{1}{2} z^2 \left[m^2 + \frac{1}{10} \cos \log(1 + z^2) \right]. \]

Take h = h(c) > 0 such that \(\bar{G}(h(c)) = c \). Since \(\bar{G}(z) \) is an even function, we have

\[\tau(c) = 2\sqrt{2} \int_0^{h(c)} \frac{du}{\sqrt{c - \bar{G}(u)}} = \frac{4}{\sqrt{Q(h)}} \int_0^1 \frac{d\xi}{\sqrt{1 - \xi^2 Q(h) Q(h)}}. \]

where

\[Q(x) = m^2 + \frac{1}{10} \cos \log(1 + x^2). \]

Let \(\alpha_k = e^{2k\pi} - 1, \beta_k = e^{(2k+1)\pi} - 1, a_k = \bar{G}(\alpha_k) \) and \(b_k = \bar{G}(\beta_k) \). Then

\[a_k < b_k \quad (k = 1, 2, \ldots) \]

and

\[\lim_{k \to \infty} a_k = \lim_{k \to \infty} b_k = \infty. \]

Since the inequalities

\[0 < \frac{Q(\alpha_k \xi)}{Q(\alpha_k)} \leq 1, \quad \frac{Q(\beta_k \xi)}{Q(\beta_k)} \geq 1 \]
hold for $\xi \in [0, 1]$, we have
\[
\tau(a_k) = \frac{4}{\sqrt{Q(\alpha_k)}} \int_0^1 \frac{d\xi}{\sqrt{1 - \xi^2 Q(\alpha_k \xi) / Q(\alpha_k)}}
\leq \frac{4\sqrt{10}}{\sqrt{10m^2 + 1}} \int_0^1 \frac{d\xi}{\sqrt{1 - \xi^2}} \leq \frac{2\pi}{m} - \bar{\alpha},
\]
and
\[
\tau(b_k) = \frac{4}{\sqrt{Q(\beta_k)}} \int_0^1 \frac{d\xi}{\sqrt{1 - \xi^2 Q(\beta_k \xi) / Q(\beta_k)}}
\geq \frac{4\sqrt{10}}{\sqrt{10m^2 - 1}} \int_0^1 \frac{d\xi}{\sqrt{1 - \xi^2}} \geq \frac{2\pi}{m} + \bar{\alpha},
\]
where
\[
\bar{\alpha} = \frac{2\pi}{m} \cdot \min \left\{ 1 - \frac{\sqrt{10m}}{\sqrt{10m^2 + 1}}, \frac{\sqrt{10m}}{\sqrt{10m^2 - 1}} - 1 \right\}.
\]
This proves that (H3) is also valid for $\bar{g}(x)$.

Therefore, the function $\bar{g}(x)$ satisfies all the assumptions of Theorem 2.1, and the corresponding equation
\[
\frac{d^2 z}{dt^2} + \bar{g}(x) = p(t)
\]
has infinitely many 2π-periodic solutions for any 2π-periodic function $p(t) \in C(R, R)$.

The author is grateful to W. Y. Ding for many valuable suggestions. The author also extends his thanks to Dr. George R. Sell for his invaluable assistance.

REFERENCES

DEPARTMENT OF MATHEMATICS, PEKING UNIVERSITY, BEIJING, THE PEOPLE’S REPUBLIC OF CHINA