Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

On the minimal eigenvalue of the Laplacian operator for $ p$-forms in conformally flat Riemannian manifolds


Author: Domenico Perrone
Journal: Proc. Amer. Math. Soc. 86 (1982), 103-108
MSC: Primary 53C20; Secondary 58G25
MathSciNet review: 663876
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ (M,g)$ be a compact orientable conformally flat Riemannian manifold and $ ^p{\lambda _1}$ the minimal eigenvalue of the Laplacian operator for $ p$-forms. We prove that if there exists a positive constant $ K$ such that $ \rho \geqslant Kg$, where $ \rho $ is the Ricci tensor of $ M$, then $ ^p{\lambda _1} \geqslant Kp(n - p + 1)/(n - 1)$ for each $ p$, $ 1 \leqslant p \leqslant n/2$, $ (n = \dim M)$; moreover if the equality holds for some $ p$ then $ M$ is of constant curvature $ \sigma = K/(n - 1)$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C20, 58G25

Retrieve articles in all journals with MSC: 53C20, 58G25


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1982-0663876-8
PII: S 0002-9939(1982)0663876-8
Article copyright: © Copyright 1982 American Mathematical Society