SHORTER NOTES

The purpose of this department is to publish very short papers of unusually elegant and polished character, for which there is no other outlet.

GAUSS-BONNET THEOREMS FOR NONCOMPACT SURFACES

STEVEN ROSENBERG

The aim of this note is to give short proofs of the following two theorems, due to Cohn-Vossen [3] and Huber [4] respectively.

THEOREM A (GAUSS-BONNET INEQUALITY). Let \(M \) be a finitely connected complete noncompact Riemannian surface with Gaussian curvature \(K \) and area element \(dA \). If \(\int_M K \, dA \) is absolutely integrable, then \(\chi(M) \geq \int_M K \, dA \).

Theorem B. Let \(M \) be a finitely connected complete, finite volume noncompact Riemannian surface with \(\int_M K \, dA \) absolutely integrable. Then

\[
\chi(M) = \int_M K \, dA.
\]

For Theorem A, see also [1].

Such an \(M \) is homeomorphic to a compact surface with \(p \) points deleted. A neighborhood of each point is homeomorphic to \(S^1 \times \mathbb{R}^+ \), and by forming the gradient flow associated to a Morse function on \(M \) [5], the metric on the cusp \(S^1 \times \mathbb{R}^+ \) can be chosen to be of the form \(g_{11}(\theta, t) \, d\theta^2 + g_{22}(\theta, t) \, dt^2 \). Reparametrizing \(\mathbb{R}^+ \) by arclength puts the metric in the form \(g_{11}(\theta, t) \, d\theta^2 + dt^2 \). Since \(M \) is complete, the new parameterization ranges over all of \(\mathbb{R}^+ \).

Let \(M_h = M - \bigcup_{i} (S^1 \times (h, \infty)) \), so \(M_h \) is just \(M \) truncated at height \(h \) up each cusp. Then the Gauss-Bonnet Theorem for surfaces with boundary gives \(\chi(M_h) = \int_M K \, dA + \int_{\partial M_h} \omega_{12} \), where \(\omega_{12} \) is the connection one-form associated to an orthonormal frame on \(M \) [2]. Since \(\chi(M) = \chi(M_h) \), we must show \(\lim_{h \to \infty} \int_{\partial M_h} \omega_{12} \geq 0 \) for Theorem A and \(\lim_{h \to \infty} \int_{\partial M_h} \omega_{12} = 0 \) for Theorem B.

Received by the editors January 14, 1982.
1980 Mathematics Subject Classification. Primary 53C45.
Picking the orthonormal frame $\theta^1 = \sqrt{g_{11}} \, d\theta$ and $\theta^2 = dt$ gives $\omega_{12} = (d/dt)(\sqrt{g_{11}}) \, d\theta$ via the first structure equation $d\theta^1 = \omega_{12} \wedge \theta^2$. The second structure equation gives $KdA = \Omega_{12} = d\omega_{12} = (d^2/dt^2)(\sqrt{g_{11}}) \, d\theta \, dt$. Since $\int_M K \, dA < \infty$, $\lim_{h \to \infty} \int_{\partial M_h}(d^2/dt^2)(\sqrt{g_{11}}) \, d\theta = 0$ or $\lim_{h \to \infty} \int_{\partial M_h}(d/dt)(\sqrt{g_{11}}) \, d\theta$ is a constant C.

For Theorem B, $\int_M \sqrt{g_{11}} \, d\theta \, dt < \infty$ implies $\lim_{h \to \infty} \int_{\partial M_h} \sqrt{g_{11}} \, d\theta = 0$. Now $\lim_{h \to \infty} \int_{\partial M_h} \omega_{12} = \lim_{h \to \infty}(d/dt) \int_{\sqrt{g_{11}}} \, d\theta = C$ forces $C = 0$.

For Theorem A, we need to show $C > 0$. Since $\int_{\partial M_h} \sqrt{g_{11}} \, d\theta \sim C \cdot h + D$ as $h \to \infty$, if $C < 0$ we get $\int_{\partial M_h} \sqrt{g_{11}} \, d\theta < 0$ for each $h > 0$. Since the integrand is positive, this is impossible.

REFERENCES

DEPARTMENT OF MATHEMATICS, BRANDEIS UNIVERSITY, WALTHAM, MASSACHUSETTS 02154

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use