Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Ruled function fields


Author: James K. Deveney
Journal: Proc. Amer. Math. Soc. 86 (1982), 213-215
MSC: Primary 12F20
DOI: https://doi.org/10.1090/S0002-9939-1982-0667276-6
MathSciNet review: 667276
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ L = {L_1}({x_1}) = {L_2}({x_2}) \supset K$ where $ {x_i}$ is transcendental over $ {L_i}$, and $ {L_i}$ is a finitely generated transcendence degree 1 extension of $ K$, $ i = 1,2$. If the genus of $ {L_1}/K = 0$, then $ {L_1}$ and $ {L_2}$ are $ K$-isomorphic. If the genus of $ {L_1}/K > 0$, then $ {L_1} = {L_2}$ and moreover $ {L_1}$ is invariant under all automorphisms of $ L/K$. A criterion is also established for a subfield of a ruled field $ L$ to be ruled.


References [Enhancements On Off] (What's this?)

  • [1] S. Amitsur, Generic splitting fields of central simple algebras, Ann. of Math. (2) 62 (1955), 8-43. MR 0070624 (17:9d)
  • [2] S. Arima, Double ruled surfaces and their canonical systems, J. Math. Soc. Japan 22 (1970), 105-112. MR 0252398 (40:5618)
  • [3] M. Deuring, Lectures on the theory of algebraic functions of one variable, Lecture Notes in Math., vol. 314, Springer-Verlag, Berlin and New York, 1973. MR 0344231 (49:8970)
  • [4] J. Deveney and J. Mordeson, Subfields and invariants of inseparable field extensions, Canad. J. Math. 29 (1977), 1304-1311. MR 0472782 (57:12472)
  • [5] S. Lang, Introduction to algebraic geometry, Interscience Tracts in Pure and Appl. Math., vol. 5, Interscience, New York, 1958. MR 0100591 (20:7021)
  • [6] M. Nagata, A theorem on valuation rings and its applications, Nagoya Math. J. 29 (1967), 85-91. MR 0207688 (34:7503)
  • [7] P. Roquette, Isomorphisms of generic splitting fields of simple algebras, J. Reine Angew. Math. 214-215 (1964), 207-226. MR 0166215 (29:3492)
  • [8] D. Triantaphyllou, Invariants of finite groups acting non-linearly on rational function fields, J. Pure Appl. Algebra 18 (1980), 315-331. MR 593621 (82c:12020)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 12F20

Retrieve articles in all journals with MSC: 12F20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1982-0667276-6
Keywords: Ruled field, genus
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society