EXTREME POINTS AND $l_1(\Gamma)$-SPACES

NINA M. ROY

Abstract. Let X be a nontrivial real Banach space and let E_X denote the set of extreme points of the closed unit ball $B(X)$.

Theorem 1. X is an $l_1(\Gamma)$-space if and only if (i) span(e) is an L-summand in X for every $e \in E_X$ and (ii) $B(X)$ is the norm closed convex hull of E_X.

Theorem 2. Let $X = Y^*$. If (i) span(e) is an L-summand in X for every $e \in E_X$ and (ii) \{$e \in E_X: e(y) = 1$\} is countable for each y in Y with $\|y\| = 1$, then X is an $l_1(\Gamma)$-space.

By definition, an L-projection on a Banach space X is a projection P such that $\|x\| = \|Px\| + \|x - Px\|$ for every x in X; the range of P is called an L-summand in X. An $l_1(\Gamma)$-space is a Banach space which is linearly isometric to the space $l_1(\Gamma)$ of all real-valued summable functions on some set Γ. Let X be a nontrivial real Banach space and let E_X denote the set of extreme points of the closed unit ball $B(X)$. In this paper we prove (Theorem 1) that X is an $l_1(\Gamma)$-space if and only if (i) span(e) is an L-summand in X for every $e \in E_X$ and (ii) $B(X)$ is the norm closed convex hull of E_X. As a consequence we have (Theorem 2) that a dual space $X = Y^*$ is an $l_1(\Gamma)$-space if (i) span(e) is an L-summand in X for every $e \in E_X$ and (ii) \{$e \in E_X: e(y) = 1$\} is countable for each y in Y with $\|y\| = 1$. The proof of Theorem 2 uses the Bishop-Phelps theorem and a result of J. Bourgain to show that $B(X)$ is the norm closed convex hull of E_X. Our paper concludes with an example of a nonseparable space Y which satisfies the hypotheses of Theorem 2 and contains uncountably many y such that $\|y\| = 1$ and \{$e \in E_Y: e(y) = 1$\} is countably infinite.

In what follows, if S is a subset of a Banach space, then the convex hull of S is denoted by $co(S)$ and the linear span of S by span S. The norm closure of S is denoted by norm-cl(S). All Banach spaces are assumed to be nontrivial.

In Lemmas 1 and 2, A is a real Banach space for which $E_X \neq \emptyset$.

Lemma 1. Let A be a nonempty finite subset of E_X such that span(e) is an L-summand in X for every e in A, and let $N = \text{span } A$. Then $B(N) = co(A \cup -A)$.

Proof. Since $N = \Sigma \text{span} (e)$ ($e \in A$), we have that N is an L-summand in X and $E_N = A \cup -A$ [1, Propositions 1.13 and 1.15]. Then $B(N) = co(A \cup -A)$ because A is finite.

The following result was communicated to the author by Ulf Uttersrud.
Lemma 2. Assume that \(\text{span}(e) \) is an \(L \)-summand in \(X \) for every \(e \) in \(E_X \). Let \(\{e_n: n = 1, 2, \ldots \} \) be a linearly independent subset of \(E_X \) and let \(x_n \in \text{span}(e_n) \) for \(n = 1, 2, \ldots \). If \(\sum \|x_n\| < \infty \), then \(\sum x_n \) converges and \(\|\sum x_n\| = \sum \|x_n\| \).

Proof. The proof follows from the fact that \(\|\sum_{n=1}^k x_n\| = \sum_{n=1}^k \|x_n\| \) for all \(k \). To obtain the induction step, observe that if \(P \) is the \(L \)-projection of \(X \) onto \(N_k = \sum_{n=1}^k \text{span}(e_n) \), then \(Pe_{k+1} = 0 \) because \(e_{k+1} \notin N_k \) by Lemma 1. (An \(L \)-projection maps an extreme point to itself or 0.)

Theorem 1. A real Banach space \(X \) is an \(l_1(\Gamma) \)-space if and only if (i) \(\text{span}(e) \) is an \(L \)-summand in \(X \) for every \(e \) in \(E_X \) and (ii) \(B(X) \) is the norm closed convex hull of \(E_X \).

Proof. Suppose that \(X \) is an \(l_1(\Gamma) \)-space. We may assume that \(X = l_1(\Gamma) \), where \(\Gamma \) is a nonempty set. For each \(\gamma \) in \(\Gamma \) let \(\delta_\gamma \) be the characteristic function of \(\{\gamma\} \). Then \(E_X = \{\pm \delta_\gamma: \gamma \in \Gamma\} \). For each \(\gamma \) in \(\Gamma \), the map \(x \mapsto x\delta_\gamma \) is an \(L \)-projection of \(X \) onto \(\text{span}(\delta_\gamma) \). Thus condition (i) holds (as it does in any \(L_1 \)-space). To prove (ii), let \(x \in X \) with \(\|x\| < 1 \). Then there is a countable set \(\{\gamma_n\} \subseteq \Gamma \) such that \(x(\gamma_i) = 0 \) for \(\gamma \notin \{\gamma_n\} \) and \(\sum_{n=1}^\infty |x(\gamma_n)| < 1 \). For each \(k \) let \(x_k = \sum_{n=1}^k x(\gamma_n)\delta_{\gamma_n} \). Then \(\|x_k\| < 1 \) and hence by Lemma 1, \(x_k \in \text{co} E_X \). Therefore \(x \in \text{norm-cl(}co E_X) \).

For the converse, assume that (i) and (ii) are true. Let \(\Gamma \) be a maximal linearly independent subset of \(E_Y \). Then \(E_X = \Gamma \cup -\Gamma \). To see this, suppose there is \(e \in E_X \) with \(e \notin \Gamma \cup -\Gamma \). Then \(e \) is a linear combination of the elements of a finite subset \(A \) of \(\Gamma \). By Lemma 1, \(e \in \text{co}(A \cup -A) \). Then \(e \in A \cup -A \) since \(e \in E_X \), and we have a contradiction. If \(\Gamma = \{e_\gamma\} \), define an operator \(T: l_1(\Gamma) \rightarrow X \) by \(T(f) = \sum \gamma f(\gamma) e_\gamma \). By Lemma 2, \(T \) is an isometry. Hence its range is closed. By (ii) and the fact that \(E_X = \Gamma \cup -\Gamma \), the range of \(T \) is dense in \(X \). Thus \(T \) is surjective.

Theorem 2. Let \(Y \) be a real Banach space such that (i) \(\text{span}(e) \) is an \(L \)-summand in \(Y^* \) for every \(e \) in \(E_{Y^*} \), and (ii) \(\{e \in E_{Y^*}: e(y) = 1\} \) is countable for each \(y \) in \(Y \) with \(\|y\| = 1 \).

Then \(Y^* \) is an \(l_1(\Gamma) \)-space.

Proof. By Theorem 1 it suffices to show that \(B(Y^*) \) is the norm closed convex hull of \(E_{Y^*} \). Let \(f \in B(Y^*) \) with \(f \neq 0 \). By the Bishop-Phelps theorem [2], the set of those \(g \) in \(Y^* \) which attain their norm is dense in \(Y^* \). Hence given \(\epsilon > 0 \), there is \(g \) in \(Y^* \) such that \(\|f - g\| < \epsilon \|g\| \) for all \(g \in B(Y^*) \) with \(\|y\| = 1 \). Let \(F_y = \{h \in B(Y^*): h(y) = 1\} \). Then \(F_y \) is a weak* compact convex set and \(\|g\| < \epsilon \). Let \(E_y \) denote the set of extreme points of \(F_y \). Then \(E_y \subseteq E_{Y^*} \) because \(F_y \) is an extremal subset of \(B(Y^*) \). Thus \(E_y = \{e \in E_{Y^*}: e(y) = 1\} \). Then \(F_y = \text{norm-cl(}co E_y) \) because \(E_y \) is countable [3]. Let \(h \in \text{co} E_y \) with \(\|h - g\| < \epsilon \). Then \(\|h - f\| < 2\epsilon \), hence \(\|f\| < 2\epsilon \).

Since \(\|f\| < \epsilon \), it follows that \(f \in \text{norm-cl(}co E_{Y^*}) \).

We now give an example of a space \(Y \) which satisfies the hypotheses of Theorem 2 and contains uncountably many \(y \) such that \(\|y\| = 1 \) and \(\{e \in E_{Y^*}: e(y) = 1\} \) is countably infinite.
Let T denote the set of all ordinals less than or equal to the first uncountable ordinal Ω, and let T have the order topology. Let $Y = \{ f \in C(T) : f(\Omega) = 0 \}$. Then Y^* is an L-space because Y is an M-space; hence the first hypothesis of Theorem 2 is satisfied. For each t in T, let the evaluation functional e_t be defined on Y by $e_t (f) = f(t)$ for all f in Y. Then $E_{Y^*} = \{ \pm e_t : t \in T, t \neq \Omega \}$. Since each function in $C(T)$ is eventually constant, the second hypothesis of Theorem 2 is satisfied. For each t in T such that $\omega \leq t < \Omega$, let f_t be the characteristic function of the interval $[0, t]$. Then $f_t \in Y$, $\| f_t \| = 1$, and $\{ e \in E_{Y^*} : e(f_t) = 1 \}$ is countably infinite. Clearly the set of functions f_t is uncountable.

In conclusion, we remark that $C(T)^* = l_1(T)$ [4, p. 175], hence the converse of Theorem 2 is false.

Acknowledgement. The author is grateful to the referee for substantially improving the results and proofs in an earlier version of this paper.

REFERENCES

Department of Mathematics, Rosemont College, Rosemont, Pennsylvania 19010