EXTREME POINTS AND $l_1(\Gamma)$-SPACES

NINA M. ROY

Abstract. Let X be a nontrivial real Banach space and let E_X denote the set of extreme points of the closed unit ball $B(X)$.

Theorem 1. X is an $l_1(\Gamma)$-space if and only if (i) span(e) is an L-summand in X for every e in E_X and (ii) $B(X)$ is the norm closed convex hull of E_X.

Theorem 2. Let $X = Y^*$. If (i) span(e) is an L-summand in X for every e in E_X and (ii) $\{e \in E_X: e(y) = 1\}$ is countable for each y in Y with $\|y\| = 1$, then X is an $l_1(\Gamma)$-space.

By definition, an L-projection on a Banach space X is a projection P such that $\|x\| = \|Px\| + \|x - Px\|$ for every x in X; the range of P is called an L-summand in X. An $l_1(\Gamma)$-space is a Banach space which is linearly isometric to the space $l_1(\Gamma)$ of all real-valued summable functions on some set Γ. Let X be a nontrivial real Banach space and let E_X denote the set of extreme points of the closed unit ball $B(X)$. In this paper we prove (Theorem 1) that X is an $l_1(\Gamma)$-space if and only if (i) span(e) is an L-summand in X for every e in E_X and (ii) $B(X)$ is the norm closed convex hull of E_X. As a consequence we have (Theorem 2) that a dual space $X = Y^*$ is an $l_1(\Gamma)$-space if (i) span(e) is an L-summand in X for every e in E_X and (ii) $\{e \in E_X: e(y) = 1\}$ is countable for each y in Y with $\|y\| = 1$. The proof of Theorem 2 uses the Bishop-Phelps theorem and a result of J. Bourgain to show that $B(X)$ is the norm closed convex hull of E_X. Our paper concludes with an example of a nonseparable space Y which satisfies the hypotheses of Theorem 2 and contains uncountably many y such that $\|y\| = 1$ and $\{e \in E_Y: e(y) = 1\}$ is countably infinite.

In what follows, if S is a subset of a Banach space, then the convex hull of S is denoted by coS and the linear span of S by spanS. The norm closure of S is denoted by norm-cl(S). All Banach spaces are assumed to be nontrivial.

In Lemmas 1 and 2, X is a real Banach space for which $E_X \neq \emptyset$.

Lemma 1. Let A be a nonempty finite subset of E_X such that span(e) is an L-summand in X for every e in A, and let $N = \text{span} A$. Then $B(N) = \text{co}(A \cup -A)$.

Proof. Since $N = \sum \text{span}(e)$ ($e \in A$), we have that N is an L-summand in X and $E_N = A \cup -A$ [1, Propositions 1.13 and 1.15]. Then $B(N) = \text{co}(A \cup -A)$ because A is finite.

The following result was communicated to the author by Ulf Uttersrud.
Lemma 2. Assume that span(e) is an L-summand in X for every e in E_x. Let \{e_n: n = 1, 2, \ldots\} be a linearly independent subset of E_x and let x_n \in \text{span}(e_n) for n = 1, 2, \ldots. If \|\Sigma x_n\| < \infty, then \Sigma x_n converges and \|\Sigma x_n\| = \|\Sigma x_n\|.

Proof. The proof follows from the fact that \|\Sigma_{k=1}^n x_n\| = \Sigma_{n=1}^k \|x_n\| for all k. To obtain the induction step, observe that if P is the L-projection of X onto N_k = \Sigma_{n=1}^k \text{span}(e_n), then佩_{k+1} = 0 because e_{k+1} \notin N_k by Lemma 1. (An L-projection maps an extreme point to itself or 0.)

Theorem 1. A real Banach space X is an l_1(\Gamma)-space if and only if (i) span(e) is an L-summand in X for every e in E_x and (ii) B(X) is the norm closed convex hull of E_x.

Proof. Suppose that X is an l_1(\Gamma)-space. We may assume that X = l_1(\Gamma), where \Gamma is a nonempty set. For each \gamma in \Gamma let \delta_\gamma be the characteristic function of \{\gamma\}. Then E_x = {\pm \delta_\gamma: \gamma \in \Gamma}. For each \gamma in \Gamma, the map x \mapsto x\delta_\gamma is an L-projection of X onto span(\delta_\gamma). Thus condition (i) holds (as it does in any L_1-space). To prove (ii), let x \in X with \|x\| \leq 1. Then there is a countable set \{\gamma_n\} \subseteq \Gamma such that x(\gamma) = 0 for \gamma \notin \{\gamma_n\} and \Sigma_{n=1}^\infty |x(\gamma_n)| < 1. Then x = \Sigma_{n=1}^\infty x(\gamma_n)\delta_{\gamma_n}. For each k let x_k = \Sigma_{n=1}^k x(\gamma_n)\delta_{\gamma_n}. Then \|x_k\| \leq 1 and hence by Lemma 1, x_k \in \text{co}(E_x). Therefore x \in \text{norm-cl}(\text{co}(E_x)).

For the converse, assume that (i) and (ii) are true. Let \Gamma be a maximal linearly independent subset of E_y. Then E_x = \Gamma \cup -\Gamma. To see this, suppose there is e \in E_x with e \notin \Gamma \cup -\Gamma. Then e is a linear combination of the elements of a finite subset A of \Gamma. By Lemma 1, e \in \text{co}(A \cup -A). Then e \notin A \cup -A since e \in E_x, and we have a contradiction. If \Gamma = \{e_\gamma\}, define an operator T: l_1(\Gamma) \to X by T(f) = \Sigma f(\gamma) e_\gamma. By Lemma 2, T is an isometry. Hence its range is closed. By (ii) and the fact that E_x = \Gamma \cup -\Gamma, the range of T is dense in X. Thus T is surjective.

Theorem 2. Let Y be a real Banach space such that (i) span(e) is an L-summand in Y* for every e in E_y, and (ii) \{e \in E_y: e(y) = 1\} is countable for each y in Y with \|y\| = 1. Then Y* is an l_1(\Gamma)-space.

Proof. By Theorem 1 it suffices to show that B(Y*) is the norm closed convex hull of E_{Y*}. Let f \in B(Y*) with f \neq 0. By the Bishop-Phelps theorem [2], the set of those g in Y* which attain their norm is dense in Y*. Hence given \epsilon > 0, there is g in Y* such that \|f\| \|g - f\| < \epsilon and \|g\| = g(y), where y \in Y with \|y\| = 1. Let F_y = \{h \in B(Y*): h(y) = 1\}. Then F_y is a weak* compact convex set and g/\|g\| \in F_y. Let E_y denote the set of extreme points of F_y. Then E_y \subseteq E_{Y*} because F_y is an extremal subset of B(Y*). Thus E_y = {e \in E_{Y*}: e(y) = 1}. Then F_y = \text{norm-cl}(\text{co}(E_y)) because E_y is countable [3]. Let h \in \text{co}(E_y) with \|h - g\| < \epsilon. Then \|h - f\| < 2\epsilon, hence \|f\| \|h - f\| < 2\epsilon \|f\|.

Since \|f\| \in \text{co}(E_y \cup -E_y), it follows that f \in \text{norm-cl}(\text{co}(E_{Y*})). We now give an example of a space Y which satisfies the hypotheses of Theorem 2 and contains uncountably many y such that \|y\| = 1 and \{e \in E_{Y*}: e(y) = 1\} is countably infinite.
Let \(T \) denote the set of all ordinals less than or equal to the first uncountable ordinal \(\Omega \), and let \(T \) have the order topology. Let \(Y = \{ f \in C(T): f(\Omega) = 0 \} \). Then \(Y^* \) is an \(L \)-space because \(Y \) is an \(M \)-space; hence the first hypothesis of Theorem 2 is satisfied. For each \(t \) in \(T \), let the evaluation functional \(e_t \) be defined on \(Y \) by \(e_t(f) = f(t) \) for all \(f \) in \(Y \). Then \(E_{Y^*} = \{ \pm e_t: t \in T, t \neq \Omega \} \). Since each function in \(C(T) \) is eventually constant, the second hypothesis of Theorem 2 is satisfied. For each \(t \) in \(T \) such that \(\omega < t < \Omega \), let \(f_t \) be the characteristic function of the interval \([0, t]\). Then \(f_t \in Y \), \(\| f_t \| = 1 \), and \(\{ e \in E_{Y^*}: e(f_t) = 1 \} \) is countably infinite. Clearly the set of functions \(f_t \) is uncountable.

In conclusion, we remark that \(C(T)^* = l_1(T) \) [4, p. 175], hence the converse of Theorem 2 is false.

Acknowledgement. The author is grateful to the referee for substantially improving the results and proofs in an earlier version of this paper.

REFERENCES