Elementary proofs of some asymptotic radial uniqueness theorems

Author:
Robert D. Berman

Journal:
Proc. Amer. Math. Soc. **86** (1982), 226-228

MSC:
Primary 30D40; Secondary 31A25, 32A20

MathSciNet review:
667279

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Elementary proofs of several generalizations of Tse's extension of an asymptotic radial uniqueness theorem of Barth and Schneider are given.

**[1]**K. F. Barth and W. J. Schneider,*A asymptotic analog of the F. and M. Riesz radial uniqueness theorem.*, Proc. Amer. Math. Soc.**22**(1969), 53–54. MR**0247095**, 10.1090/S0002-9939-1969-0247095-9**[2]**T. L. Hayden and T. J. Suffridge,*Biholomorphic maps in Hilbert space have a fixed point*, Pacific J. Math.**38**(1971), 419–422. MR**0305158****[3]**P. J. Rippon,*The boundary cluster sets of subharmonic function*, J. London Math. Soc. (2)**17**(1978), no. 3, 469–479. MR**500632**, 10.1112/jlms/s2-17.3.469**[4]**-,*A radial uniqueness theorem for meromorphic functions*, unpublished.**[5]**K. F. Tse,*An analog of the Lusin-Privaloff radial uniqueness theorem*, Proc. Amer. Math. Soc.**25**(1970), 310-312.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
30D40,
31A25,
32A20

Retrieve articles in all journals with MSC: 30D40, 31A25, 32A20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1982-0667279-1

Keywords:
Asymptotic radial uniqueness,
Barth-Schneider

Article copyright:
© Copyright 1982
American Mathematical Society