Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Holomorphic mappings of domains with generic corners

Author: S. M. Webster
Journal: Proc. Amer. Math. Soc. 86 (1982), 236-240
MSC: Primary 32H99; Secondary 32D99
MathSciNet review: 667281
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The boundary behavior of a biholomorphic mapping $ f$ between two domains with real analytic, generic, nondegenerate corners in $ {{\mathbf{C}}^n}$ is considered. Under certain minimal regularity assumptions on $ f$ it is shown that $ f$ continues holomorphically past the boundary.

References [Enhancements On Off] (What's this?)

  • [1] H. Lewy, On the boundary behavior of holomorphic mappings, Contrib. Centro Linceo Inter. Sc. Mat. e Loro Appl. No. 35, Acad. Naz. dei Lincei, 1977, pp. 1-8.
  • [2] L. Nirenberg, S. Webster and P. Yang, Local boundary regularity of holomorphic mappings, Comm. Pure Appl. Math. 33 (1980), 305-338.
  • [3] S. I. Pinchuk, On the analytic continuation of biholomorphic mappings, Math. Sb. 27 (3) (1975), 375-392.
  • [4] W. Rudin, Lectures on the edge-of-the-wedge theorem, CBMS Regional Conf. Ser. in Math., no. 6, Amer. Math. Soc., Providence, R. I., 1971.
  • [5] S. Webster, On the reflection principle in several complex variables, Proc. Amer. Math. Soc., 72 (1978), 26-28.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32H99, 32D99

Retrieve articles in all journals with MSC: 32H99, 32D99

Additional Information

Keywords: Biholomorphic map, reflection principle, generic submanifold, nondegenerate Levi form
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society