Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Distance estimates for von Neumann algebras

Author: Shlomo Rosenoer
Journal: Proc. Amer. Math. Soc. 86 (1982), 248-252
MSC: Primary 46L10
MathSciNet review: 667283
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that for certain von Neumann algebras $ \mathcal{A}$, there is a constant $ C$ such that

$\displaystyle {\text{dist}}(T, \mathcal{A}) \leqslant C\mathop {\sup }\limits_{... ...ext{all}}\;T\;{\text{in}}\;\mathcal{B}{\text{(}}\mathcal{H}{\text{)}}{\text{.}}$

References [Enhancements On Off] (What's this?)

  • [1] W. B. Arveson, Interpolation problems in nest algebras, J. Funct. Anal. 20 (1975), 208-233.
  • [2] E. Christensen, Perturbations of operator algebras. II, Indiana Univ. Math. J. 26 (1977), 891-904.
  • [3] K. R. Davidson, Commutative subspace lattices, Indiana Univ. Math. J. 27 (1978), 479-490.
  • [4] F. Gilfeather and D. R. Larson, Nest subalgebras of von Neumann algebras: Commutants modulo compacts and distance estimates, preprint.
  • [5] B. E. Johnson, Characterization and norms of derivations on von Neumann algebras, Lecture Notes in Math., vol. 725, Springer, Berlin and New York, 1979, pp. 228-236.
  • [6] B. E. Johnson and S. K. Parrott, Operators commuting with a von Neumann algebra modulo the set of compact operators, J. Funct. Anal. 11 (1972), 39-61.
  • [7] H. Radjavi and P. Rosenthal, Invariant subspaces, Springer-Verlag, Berlin, 1973.
  • [8] J. T. Schwartz, $ {W^ * }$-algebras, Gordon and Breach, New York, 1967.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L10

Retrieve articles in all journals with MSC: 46L10

Additional Information

Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society