FACTORISATION OF CHARACTERISTIC FUNCTIONS
ON NONCOMMUTATIVE GROUPS

AUBREY WULFSOHN

Abstract. A characteristic function, without idempotent factors, on a separable compact group is decomposed, modulo characters, as a product of indecomposable characteristic functions and an infinitely divisible characteristic function.

A continuous normalized positive definite function on a topological group G will be called a characteristic function. Denote by $|\phi|^2$ the characteristic function defined by $|\phi|^2(g) = |\phi(g)|^2$ for all g in G. The characteristic function identically 1 will be called degenerate. A continuous homomorphism of G to \mathbb{C}^*, the group of complex numbers modulo 1, will be called a character. We are concerned with the factorisation of a characteristic function as a product of characteristic functions where we write $\phi = \phi_1\phi_2$ if $\phi(g) = \phi_1(g)\phi_2(g)$ for all g in G. A characteristic function ϕ is called indecomposable if it cannot be expressed as a product of two other characteristic functions, idempotent if $\phi = \phi^2$ and infinitely divisible if for each $n \in \mathbb{N}$ one may write $\phi = \prod_{n=1}^{\infty} \phi^{(n)}$ for some characteristic function $\phi^{(n)}$, each $\phi^{(n)} = \phi^{(n)}$. Denote the set of factors of ϕ by F_ϕ, the set of indecomposable factors of ϕ by IF_ϕ and the subgroup of G generated by $\{g: \phi(g) \neq 0\}$ by G_ϕ. Denote left Haar measure on a separable locally compact group by dg.

For the purposes of factorisation we shall consider two characteristic functions ϕ_1 and ϕ_2 to be equivalent if $\phi_1 = \phi_2\chi$ where χ is a character. When G is commutative a characteristic function is the Fourier transform of a probability measure on the dual group \hat{G} and equivalent characteristic functions are the Fourier transforms of shift-equivalent measures on \hat{G} [4].

A. I. Khinchin [2] showed that the characteristic function of a probability distribution on \mathbb{R} can be represented as $\phi_2\phi_3$ where ϕ_2 is a denumerable product of indecomposable factors, ϕ_3 has no indecomposable factors and is necessarily infinitely divisible. K. R. Parthasarathy, R. Ranga Rao and S. R. S. Varadhan [3] extended this result to a characteristic function on an arbitrary separable locally compact commutative group decomposing it as $\phi_1\phi_2\phi_3$ where ϕ_1 is idempotent, ϕ_2 and ϕ_3 as above. When the group has no compact subgroups there is no proper idempotent factor.
The factorisation can be translated to the positive-definite matrices \([\alpha_{ij}] = [\phi(g, g^{-1})]\) for sequences \((g_i)\) in \(G\). The product of characteristic functions corresponds to coefficientwise multiplication of the matrices, and matrices \([\alpha_{ij}]\) and \([\beta_{ij}]\) correspond to equivalent characteristic functions if and only if \(\alpha_{ij} = \beta_{ij}c_ic_j\) for \(c_i, c_j \in \mathbb{C}^\ast\).

In §1 we consider the cancellation of idempotent factors from a characteristic function on a topological group and find conditions determining whether a characteristic function has idempotent factors or not. In §2 we prove Khinchin's factorisation theorem for a characteristic function, without idempotent factors, on a separable compact group. We have not been able to prove Khinchin's theorem for characteristic functions with idempotent factors, neither have we been able to construct a counterexample. In §3 we show why, in the commutative case, any characteristic function can be factorised as above.

1. Idempotent factors of a characteristic function on a topological group.

Proposition 1. Let \(G\) be a topological group. If \(\psi\) is an idempotent factor of a characteristic function \(\varphi\) of \(G\) then \(\psi = \chi_H\) where \(H\) is an open and closed subgroup of \(G\). The maximal idempotent factor, i.e. that with the minimal support and so the least degenerate, is \(\chi_G^\ast\). One factorises \(\varphi\) as \(\chi_G\varphi_0\) where \(\varphi_0\) is the restriction of \(\varphi\) to \(G_h^0\).

Proof. An idempotent is necessarily of the form \(x\varphi\) for a subset \(H\) of \(G\). Since the factors are required to be continuous it follows that \(H\) is open and closed and, since \(\psi(g_1) = 1, \psi(g_2) = 1\) implies \(\psi(g_1g_2) = 1\), \([1, 32.7]\), it follows that \(H\) must be an open (and closed) subgroup. For \(\chi_H\) to be a factor of \(\varphi\), necessarily \(\chi_H(g) \neq 0\) whenever \(\varphi(g) \neq 0\), so \(H \supseteq G_h^0\). By construction \(G_h^0\) is an open subgroup and so also closed. By \([1, 32.43]\), \(\varphi_0\) is also a characteristic function for \(G\).

Corollary 1. The characteristic function \(\varphi\) has nondegenerate idempotent factors if and only if \(G_h^0 \neq G\).

Proposition 2. Let \(\varphi\) be an infinitely divisible characteristic function on a group \(G\). It has a nondegenerate idempotent factor if and only if it has zeros.

Proof. The function \(\varphi_1 = \lim_n |\varphi|^{2^{-n}}\) is the idempotent factor, where \(|\varphi|(g) = |\phi(g)|\) for all \(g\) in \(G\). Indeed, \(\varphi\varphi\) is a characteristic function and, since \(\varphi\) is infinitely divisible, its repeated square roots will exist and be characteristic functions, Furthermore \(\varphi_1 = \chi_G^\ast\).

This generalises Lemma 4.2 of \([5]\), proved there for compact \(G\).

2. Characteristic functions, without idempotent factors, on a separable compact group.

Lemma 1. Let \(G\) be a separable compact group and \((\varphi_n)\) a sequence of characteristic functions such that \(\int |\varphi_n(g)|^2 \, dg \to 1\) as \(n \to \infty\). Then there exists a sequence \((\chi_n)\) of characters such that \(\varphi_n\chi_n\) converges uniformly to the degenerate characteristic function as \(n \to \infty\).
Proof. The proof is contained explicitly in the proof of [5, Lemma 4.1].

For a characteristic function \(\phi \), without idempotent factors, on a compact group we define the Khinchin functional \(N_\phi \) on \(F_\phi \), which measures 'departure' from the degenerate characteristic functional, by \(N_\phi(\psi) = -\int_G \log |\psi(g)| \, dg \). It is well defined and convergent since \(G \) is generated by a sequence of elements \((g_i) \) such that \(\phi(g_i) \neq 0 \) for all \(i \), and since \(G \) is compact, \(N_\phi \) is bounded.

Proposition 3. Let \(\phi \) be a characteristic functional without idempotent factors on a separable compact group \(G \). If \(\psi_1, \psi_2, \psi \in F_\phi \)

(i) \(N_\phi(\psi_1\psi_2) = N_\phi(\psi_1) + N_\phi(\psi_2) \),

(ii) \(N_\phi(\psi) \geq \int_G (1 - |\psi(g)|) \, dg \geq 0 \),

(iii) \(N_\phi(\psi) = 0 \) if and only if \(\psi \) is equivalent to the degenerate characteristic function.

Proof. Properties (i) and (ii) are obvious. Property (iii) follows since \(N_\phi(\chi_G) = 0 \) and \(N_\phi(\chi) = 0 \) for any character \(\chi \); if \(N_\phi(\psi) = 0 \) then

\[
\int_G (1 - |\psi(g)|^2) \, dg \leq 2 \int_G (1 - |\psi(g)|) \, dg = 0
\]

by (ii), and, by Lemma 1, there exists a character \(\chi \) such that \(\psi \chi \) is degenerate.

Lemma 2. Let \(\phi \) be a characteristic function without idempotent factors on a separable compact group \(G \) and let \(\psi_i \) be a sequence of factors of \(\phi \) such that for all \(n \in \mathbb{N} \) the product \(\prod_{i=1}^n \psi_i \) is also a factor of \(\phi \). Then there exist characters \(\chi_i \) such that \(\prod_{i=1}^n \chi_i \psi_i \) converges to a characteristic function as \(n \to \infty \).

Proof. \(\sum N_\phi(\psi_i) \leq N_\phi(\phi) \) so \(\sum_{i=k}^\infty N_\phi(\psi_i) \) and \(N_\phi(\prod_{i=k}^\infty \psi_i) \) converge to zero as \(k \to \infty \). By Lemma 1 there exist \((\chi_k) \) such that \((\chi_{k-1} \prod_{i=k}^\infty \psi_i) \) converges to the degenerate characteristic function as \(k \to \infty \). Thus, absorbing each \(\chi_{k-1} \) in the preceding finite product, \(\prod_{i=1}^n \psi_i \chi_i \) converges to a characteristic function as \(n \to \infty \).

Proposition 4. Let \(\phi \) be a real-valued characteristic function on a compact group. Every sequence in \(F_\phi \) has a convergent subsequence.

Proof. The set \(F_\phi \) is equicontinuous since, for \(\psi \in F_\phi \),

\[
|\psi(g) - \psi(h)|^2 \leq 2(1 - \text{Re} \psi(g^{-1}h)) \leq 2(1 - \phi(g^{-1}h)).
\]

The proposition follows from the Arzela-Ascoli theorem.

Lemma 2 is the noncommutative version of [4, Theorem III.5.3], Proposition 4 is an analogue of Corollary III.5.2.

Proposition 5. Let \(G \) be a separable compact group. Any characteristic function without idempotent factors can be factorized, modulo a character, as a product of a denumerable number of indecomposable characteristic functions and a characteristic function with no indecomposable factors.

Proof. If \(\phi \) does not have any indecomposable factors the proposition holds. Suppose \(\phi \) has indecomposable factors. Write \(\text{Sup}(N_\phi(\psi) : \psi \in IF_\phi) = \delta(\phi) \). One can decompose \(\phi \) as \(\psi_1 \lambda_1 \) where \(N_\phi(\psi_1) \geq \frac{1}{2} \delta(\phi) \) and decompose the characteristic function \(\lambda_{n-1} \) as \(\psi_n \lambda_n \) where \(N_\phi(\psi_n) \geq \frac{1}{2} \delta(\lambda_{n-1}) \), for \(n = 2, 3, \ldots \). If \(\lambda_k \) has no
indecomposable factors for some \(k \) the process terminates and the proposition holds. When the process does not terminate there exist, by Lemma 2, characters \(\chi_i \) such that \(\prod \psi \chi_i \) converges. So \(N_q(\psi_n) \rightarrow 0 \) as \(n \rightarrow \infty \). So also \(\lambda_n \) will converge to a characteristic function \(\lambda \) as \(n \rightarrow \infty \). If \(\lambda \) has an indecomposable factor \(\psi \) then \(\psi \in F_{\lambda_n} \) for all \(n \) and so \(N_q(\psi) \leq \delta(\lambda_n) \) for all \(n \); as \(\delta(\lambda_n) \leq 2N_q(\psi_{n+1}) \rightarrow 0 \) as \(n \rightarrow \infty \), it follows from Proposition 3 that \(\psi \) is a character.

Lemma 3. Let \(\phi \) be a characteristic function, with no indecomposable factors and with no idempotent factors, on a separable compact group \(G \). There exists a sequence of decompositions \((D_n) \) of \(\phi \) such that \(\nu = \inf_n \sup \{ 1 - |\phi(g)| : \phi \in D_n, g \in G \} = 0 \).

Proof. For any decomposition \(D \) of \(\phi \) let

\[
\nu_D = \sup \{ 1 - |\psi(g)| : \psi \in D, g \in G \}.
\]

For any characteristic function \(\tau \), if \(\psi \in F_\tau \) then \(1 - |\psi(g)| \leq 1 - |\tau(g)| \) for all \(g \) in \(G \). One can arrange an array of decompositions

\[
(D_n: \phi = \phi_{n,1} \cdots \phi_{n,k_n})
\]

such that \(\nu_{D_n} \rightarrow \nu \) as \(n \rightarrow \infty \), \(1 - |\phi_{n,j}(g)| \leq 1 - |\phi_{n,i}(g)| \) for all \(g \in G \), \(1 < j \leq k_n \), and \(1 - |\phi_{n,1}(g)| = \nu_{D_n} \) for some \(g \). Using Lemma 2, \(\phi \) can be decomposed as \(\phi_1 \phi_2 \), where \(\phi_2 = \lim_n \prod_{j=2}^{k_n} \chi_{n,j} \phi_{n,j} \), for an array \((\chi_{n,j}) \) of characters of \(G \), and such that \(1 - |\phi_{n}(g)| \leq \nu \) for some \(g \). Since \(\phi_1 \) and \(\phi_2 \) are again decomposable \(\nu \) must be 0.

An array of decompositions \((D_n) \) such that \(\nu = 0 \) will be called uniformly infinitesimal.

Corollary 2. If a characteristic function \(\phi \) on a compact separable group has neither idempotent nor indecomposable factors then \(\{ g : \phi(g) \neq 0 \} = G_\phi \).

Proof. Since \(G_\phi = G_{\phi^2} \) it is sufficient to prove that if \(|\phi|^2(g_1) > 0 \) and \(|\phi|^2(g_2) > 0 \) then \(|\phi|^2(g_1 g_2) > 0 \). Choose a uniformly infinitesimal array of decompositions \((\phi_{n,1} \cdots \phi_{n,k_n})_n \) of \(\phi \). For each of the decompositions \(|\phi|^2(g) = |\phi_{n,1}|^2(g) \cdots |\phi_{n,k_n}|^2(g) \). Thus \(|\phi|^2(g) > 0 \) if and only if, for any \(n \), \(|\phi_{n,j}|^2(g) > 0 \), \(1 < j \leq k_n \), and so also if and only if \(\lim_n (n - |\phi_{n,j}|^2(g)) < \infty \) for \(j \in \mathbb{N} \). The corollary follows using [5, Lemma 3.6].

Proposition 6. A characteristic function \(\phi \), with neither idempotent nor indecomposable factors, on a compact separable group \(G \), is, modulo a character, infinitely divisible.

Proof. By Corollary 1, \(G = G_\phi \). We denote \(\phi(h^{-1} g)(\phi(h^{-1})\phi(g))^{-1} \) by \(K(g, h) \), adding suffixes if required. By Lemma 3 we can find a uniformly infinitesimal array \((\phi_{n,1} \cdots \phi_{n,k_n})_n \) of decompositions of \(\phi \) such that, for large enough \(n \), \(1 - |\phi_{n,j}(g)| \) is as small as we like. By [6, Lemma 3.5],

\[
|K_{n,j}(g, h)| \leq 2(1 - |\phi_{n,j}(h^{-1})|)^{1/2}(1 - |\phi_{n,j}(g)|)^{1/2}(\phi_{n,j}(h^{-1})\phi_{n,j}(g))^{-1}
\]

for \(n \in \mathbb{N} \), \(1 < j \leq k_n \). So \(\lim_n \sup \{ 1 - K_{n,j}(g, h) \} = 0 \). Using the procedure of [6, Lemma 4.2] we can define \(L(g, h) = \log K(g, h) \) and prove it to be continuous and positive-definite on \(G \times G \). As in [6, Lemma 4.3], \(L(h, g^{-1}) \) is an additive 2-cocycle.
It is a coboundary since $H_2(G, \mathbb{R}) = \{0\}$ and the real and imaginary parts of L can be considered separately. Hence $L(g, h) = \psi(h^{-1}g) - \psi(h^{-1}) - \psi(g)$ for some continuous conditionally positive-definite function ψ on G. By [5, Theorem 4.1], e^ψ is infinitely divisible. As in the proof of [6, Theorem 5.1], $e^\psi = \phi \chi$ for some character χ of G.

Corollary 3. On a separable compact group, if a characteristic function has no idempotent factors then it has indecomposable factors whenever it has zeros.

Proof. Suppose ϕ has zeros but no indecomposable factors. By Proposition 6 it is infinitely divisible so by Proposition 2 it cannot have zeros.

Theorem. Let G be a separable compact group and ϕ a characteristic function on G with no idempotent factors. Then ϕ can be decomposed, modulo a character, as a product of indecomposable characteristic functions and an infinitely divisible characteristic function.

Proof. The theorem follows from Propositions 5 and 6.

3. **Commutative groups.** The method in [3] for proving Lemma 2 for a locally compact separable commutative group is to use [4, Corollary III.5.2], the analogue of our Proposition 4, to prove the existence of characters χ_i such that products $\prod \psi_i \chi_i$ converge, and [4, Theorem III.5.2] to prove that all such convergent products are equivalent. Lemma 5 is [4, Theorem III.5.2] with a simpler proof than the original.

Lemma 4. Let G be a complete separable metric commutative group. If ϕ and ψ are characteristic functions on G such that $\phi \psi$ is the degenerate characteristic function, then ϕ and ψ are characters.

Proof. Denote the measure corresponding to a characteristic function ξ by μ_ξ. Since $\mu_\phi * \mu_\psi$ is the unit mass at the neutral element of G, so μ_ϕ and μ_ψ must be point masses. Hence ϕ and ψ are characters.

Lemma 5. Let ϕ and ψ be characteristic functions on a complete separable metric commutative group. If $\phi \in F_\psi$ and $\psi \in F_\phi$, then ϕ is equivalent to ψ.

Proof. The lemma follows from Lemma 4. Indeed, if $\phi = \chi \psi$ and $\psi = \chi \phi$, then $\phi = \chi_1 \chi_2 \phi$, so $\chi_1 \chi_2$ is degenerate.

Lemma 6. Let ϕ be a characteristic function on a locally compact separable commutative group G. Any character on G_ϕ extends uniquely to a character of G.

Proof. Denote the annihilator of G_ϕ in \hat{G} by K and identify $\hat{G}_\phi = \hat{G}/K$ with a Borel section B of G. As an element of B is also an element of G, a character of G_ϕ uniquely determines a character of G.

Let ϕ be a characteristic function on a locally compact separable commutative group G. By Proposition 1, ϕ can be factorised as $\chi G_\phi \phi_0$. Propositions 5 and 6 hold for ϕ_0 on G_ϕ [3]. By Lemma 6 the characters of G_ϕ occurring in the factorisation extend to characters of G. Thus ϕ can be factorised as $\phi_1 \phi_2 \phi_3$ as stated in the introduction.
The author wishes to thank Professor K. R. Parthasarathy for suggesting the problem and for his criticism of an earlier version.

REFERENCES

MATHEMATICS FACULTY, OPEN UNIVERSITY, MILTON KEYNES, MK7 6AA, GREAT BRITAIN