Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

The Radon transform on a family of curves in the plane. II


Author: A. M. Cormack
Journal: Proc. Amer. Math. Soc. 86 (1982), 293-298
MSC: Primary 44A15; Secondary 44A20, 53C65, 92A07
DOI: https://doi.org/10.1090/S0002-9939-1982-0667292-4
MathSciNet review: 667292
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A further discussion of Radon's problem for curves in the plane given, for fixed $ (p,\phi )$, by $ {r^\alpha }\cos \{ \alpha (\theta - \phi )\} = {p^\alpha }$. $ \alpha $ real, $ \alpha \ne 0$. Functions yielding null transforms, and zeros of the Fourier components of the transforms are given for general $ \alpha $. and several orthogonal expansions are given for $ \alpha = \pm 1/m$. $ m = 1,2,3 \ldots .$


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 44A15, 44A20, 53C65, 92A07

Retrieve articles in all journals with MSC: 44A15, 44A20, 53C65, 92A07


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1982-0667292-4
Keywords: Radon transform
Article copyright: © Copyright 1982 American Mathematical Society